danishmuhammad's picture
Update app.py
0f9a5f0 verified
from unsloth import FastLanguageModel
import torch
import gradio as gr
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
"unsloth/mistral-7b-v0.3-bnb-4bit", # New Mistral v3 2x faster!
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"unsloth/llama-3-8b-bnb-4bit", # Llama-3 15 trillion tokens model 2x faster!
"unsloth/llama-3-8b-Instruct-bnb-4bit",
"unsloth/llama-3-70b-bnb-4bit",
"unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster!
"unsloth/Phi-3-medium-4k-instruct",
"unsloth/mistral-7b-bnb-4bit",
"unsloth/gemma-7b-bnb-4bit", # Gemma 2.2x faster!
] # More models at https://huggingface.co./unsloth
model = FastLanguageModel(device="cpu")
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "danishmuhammad/ccat2025_llama_gguf",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
FastLanguageModel.for_inference(model)
alpaca_prompt = """Below is an input that describes a question, answer the following question as clearly as possible. If additional context is needed, provide it briefly.
### Input:
{}
### Response:
{}"""
with gr.Blocks() as demo:
chatbot = gr.Chatbot(layout="bubble")
user_input = gr.Textbox()
clear = gr.ClearButton([user_input, chatbot])
def answers_chat(user_input,history):
history = history or []
formatted_input = alpaca_prompt.format(user_input, "")
inputs = tokenizer([formatted_input], return_tensors="pt").to(model.device)["input_ids"]
# Generate response with adjusted parameters
outputs = model.generate(
**inputs,
max_new_tokens=512, # Increase to allow for longer responses
temperature=0.4, # Add temperature to introduce variation
repetition_penalty=1.2, # Penalize repeating tokens
no_repeat_ngram_size=3, # Avoid repeating sequences of 3 tokens
use_cache=True,
eos_token_id=tokenizer.eos_token_id
)
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
formatted_response = response[len(formatted_input):].strip()
history.append((user_input,formatted_response))
return "",history
user_input.submit(answers_chat, [user_input, chatbot], [user_input, chatbot])
demo.launch()