Spaces:
Runtime error
Runtime error
from unsloth import FastLanguageModel | |
import torch | |
import gradio as gr | |
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! | |
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ | |
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. | |
# 4bit pre quantized models we support for 4x faster downloading + no OOMs. | |
fourbit_models = [ | |
"unsloth/mistral-7b-v0.3-bnb-4bit", # New Mistral v3 2x faster! | |
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit", | |
"unsloth/llama-3-8b-bnb-4bit", # Llama-3 15 trillion tokens model 2x faster! | |
"unsloth/llama-3-8b-Instruct-bnb-4bit", | |
"unsloth/llama-3-70b-bnb-4bit", | |
"unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster! | |
"unsloth/Phi-3-medium-4k-instruct", | |
"unsloth/mistral-7b-bnb-4bit", | |
"unsloth/gemma-7b-bnb-4bit", # Gemma 2.2x faster! | |
] # More models at https://huggingface.co./unsloth | |
model = FastLanguageModel(device="cpu") | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name = "danishmuhammad/ccat2025_llama_gguf", | |
max_seq_length = max_seq_length, | |
dtype = dtype, | |
load_in_4bit = load_in_4bit, | |
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf | |
) | |
FastLanguageModel.for_inference(model) | |
alpaca_prompt = """Below is an input that describes a question, answer the following question as clearly as possible. If additional context is needed, provide it briefly. | |
### Input: | |
{} | |
### Response: | |
{}""" | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot(layout="bubble") | |
user_input = gr.Textbox() | |
clear = gr.ClearButton([user_input, chatbot]) | |
def answers_chat(user_input,history): | |
history = history or [] | |
formatted_input = alpaca_prompt.format(user_input, "") | |
inputs = tokenizer([formatted_input], return_tensors="pt").to(model.device)["input_ids"] | |
# Generate response with adjusted parameters | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=512, # Increase to allow for longer responses | |
temperature=0.4, # Add temperature to introduce variation | |
repetition_penalty=1.2, # Penalize repeating tokens | |
no_repeat_ngram_size=3, # Avoid repeating sequences of 3 tokens | |
use_cache=True, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
formatted_response = response[len(formatted_input):].strip() | |
history.append((user_input,formatted_response)) | |
return "",history | |
user_input.submit(answers_chat, [user_input, chatbot], [user_input, chatbot]) | |
demo.launch() |