from contextlib import nullcontext from functools import partial import math import fire import gradio as gr import numpy as np import torch from einops import rearrange from ldm.models.diffusion.ddim import DDIMSampler from omegaconf import OmegaConf from PIL import Image from torch import autocast from torchvision import transforms from ldm.util import load_and_preprocess, instantiate_from_config def load_model_from_config(config, ckpt, device, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location=device) if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.to(device) model.eval() return model @torch.no_grad() def sample_model(input_im, model, sampler, precision, h, w, ddim_steps, n_samples, scale, \ ddim_eta, x, y, z): precision_scope = autocast if precision=="autocast" else nullcontext with precision_scope("cuda"): with model.ema_scope(): c = model.get_learned_conditioning(input_im).tile(n_samples,1,1) T = torch.tensor([math.radians(x), math.sin(math.radians(y)), math.cos(math.radians(y)), z]) T = T[None, None, :].repeat(n_samples, 1, 1).to(c.device) c = torch.cat([c, T], dim=-1) c = model.cc_projection(c) cond = {} cond['c_crossattn'] = [c] c_concat = model.encode_first_stage((input_im.to(c.device))).mode().detach() cond['c_concat'] = [model.encode_first_stage((input_im.to(c.device))).mode().detach()\ .repeat(n_samples, 1, 1, 1)] if scale != 1.0: uc = {} uc['c_concat'] = [torch.zeros(n_samples, 4, h // 8, w // 8).to(c.device)] uc['c_crossattn'] = [torch.zeros_like(c).to(c.device)] else: uc = None shape = [4, h // 8, w // 8] samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=cond, batch_size=n_samples, shape=shape, verbose=False, unconditional_guidance_scale=scale, unconditional_conditioning=uc, eta=ddim_eta, x_T=None) print(samples_ddim.shape) # samples_ddim = torch.nn.functional.interpolate(samples_ddim, 64, mode='nearest', antialias=False) x_samples_ddim = model.decode_first_stage(samples_ddim) return torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0).cpu() def main( model, device, input_im, x=0., y=0., z=0., scale=3.0, n_samples=4, ddim_steps=50, preprocess=True, ddim_eta=1.0, precision="fp32", h=256, w=256, ): # input_im[input_im == [0., 0., 0.]] = [1., 1., 1., 1.] print(input_im.size) if preprocess: input_im = load_and_preprocess(input_im) else: input_im = input_im.resize([256, 256], Image.Resampling.LANCZOS) input_im = np.asarray(input_im, dtype=np.float32) / 255. input_im[input_im[:, :, -1] <= 0.9] = [1., 1., 1., 1.] # very important, thresholding background input_im = input_im[:, :, :3] print(input_im.shape) input_im = transforms.ToTensor()(input_im).unsqueeze(0).to(device) input_im = input_im * 2 - 1 input_im = transforms.functional.resize(input_im, [h, w]) sampler = DDIMSampler(model) x_samples_ddim = sample_model(input_im, model, sampler, precision, h, w,\ ddim_steps, n_samples, scale, ddim_eta, x, y, z) output_ims = [] for x_sample in x_samples_ddim: x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') output_ims.append(Image.fromarray(x_sample.astype(np.uint8))) return output_ims description = \ """Generate variations on an input image using a fine-tuned version of Stable Diffision. Trained by [Justin Pinkney](https://www.justinpinkney.com) ([@Buntworthy](https://twitter.com/Buntworthy)) at [Lambda](https://lambdalabs.com/) __Get the [code](https://github.com/justinpinkney/stable-diffusion) and [model](https://huggingface.co./lambdalabs/stable-diffusion-image-conditioned).__ ![](https://raw.githubusercontent.com/justinpinkney/stable-diffusion/main/assets/im-vars-thin.jpg) """ article = \ """ ## How does this work? The normal Stable Diffusion model is trained to be conditioned on text input. This version has had the original text encoder (from CLIP) removed, and replaced with the CLIP _image_ encoder instead. So instead of generating images based a text input, images are generated to match CLIP's embedding of the image. This creates images which have the same rough style and content, but different details, in particular the composition is generally quite different. This is a totally different approach to the img2img script of the original Stable Diffusion and gives very different results. The model was fine tuned on the [LAION aethetics v2 6+ dataset](https://laion.ai/blog/laion-aesthetics/) to accept the new conditioning. Training was done on 4xA6000 GPUs on [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud). More details on the method and training will come in a future blog post. """ def run_demo( device_idx=0, ckpt="last.ckpt", config="configs/sd-objaverse-finetune-c_concat-256.yaml", ): device = f"cuda:{device_idx}" config = OmegaConf.load(config) model = load_model_from_config(config, ckpt, device=device) inputs = [ gr.Image(type="pil", image_mode="RGBA"), # shape=[512, 512] gr.Number(label="polar (between axis z+)"), gr.Number(label="azimuth (between axis x+)"), gr.Number(label="z (distance from center)"), gr.Slider(0, 100, value=3, step=1, label="cfg scale"), gr.Slider(1, 8, value=4, step=1, label="Number images"), gr.Slider(5, 200, value=100, step=5, label="steps"), gr.Checkbox(True, label="image preprocess (background removal and recenter)"), ] output = gr.Gallery(label="Generated variations") output.style(grid=2) fn_with_model = partial(main, model, device) fn_with_model.__name__ = "fn_with_model" examples = [ # ["assets/zero-shot/bear.png", 0, 0, 0, 3, 4, 100], # ["assets/zero-shot/car.png", 0, 0, 0, 3, 4, 100], # ["assets/zero-shot/elephant.png", 0, 0, 0, 3, 4, 100], # ["assets/zero-shot/pikachu.png", 0, 0, 0, 3, 4, 100], # ["assets/zero-shot/spyro.png", 0, 0, 0, 3, 4, 100], # ["assets/zero-shot/taxi.png", 0, 0, 0, 3, 4, 100], ] demo = gr.Interface( fn=fn_with_model, title="Stable Diffusion Novel View Synthesis (Image)", # description=description, # article=article, inputs=inputs, outputs=output, examples=examples, allow_flagging="never", ) demo.launch(enable_queue=True, share=True) if __name__ == "__main__": fire.Fire(run_demo)