zero123-live / app.py
rliu's picture
Update app.py
33fb086
raw
history blame
27.6 kB
'''
conda activate zero123
cd zero123
python gradio_new.py 0
'''
import diffusers # 0.12.1
import math
import fire
import gradio as gr
import lovely_numpy
import lovely_tensors
import numpy as np
import os
import plotly.express as px
import plotly.graph_objects as go
import rich
import sys
import time
import torch
from contextlib import nullcontext
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from einops import rearrange
from functools import partial
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import create_carvekit_interface, load_and_preprocess, instantiate_from_config
from lovely_numpy import lo
from omegaconf import OmegaConf
from PIL import Image
from rich import print
from transformers import AutoFeatureExtractor
from torch import autocast
from torchvision import transforms
_SHOW_DESC = True
_SHOW_INTERMEDIATE = False
# _SHOW_INTERMEDIATE = True
_GPU_INDEX = 0
# _GPU_INDEX = 2
# _TITLE = 'Zero-Shot Control of Camera Viewpoints within a Single Image'
_TITLE = 'Zero-1-to-3: Zero-shot One Image to 3D Object'
# This demo allows you to generate novel viewpoints of an object depicted in an input image using a fine-tuned version of Stable Diffusion.
_DESCRIPTION = '''
This live demo allows you to control camera rotation and thereby generate novel viewpoints of an object within a single image.
It is based on Stable Diffusion. Check out our [project webpage](https://zero123.cs.columbia.edu/) and [paper](https://arxiv.org/pdf/2303.11328.pdf) if you want to learn more about the method!
Note that this model is not intended for images of humans or faces, and is unlikely to work well for them.
'''
_ARTICLE = 'See uses.md'
def load_model_from_config(config, ckpt, device, verbose=False):
print(f'Loading model from {ckpt}')
pl_sd = torch.load(ckpt, map_location='cpu')
if 'global_step' in pl_sd:
print(f'Global Step: {pl_sd["global_step"]}')
sd = pl_sd['state_dict']
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print('missing keys:')
print(m)
if len(u) > 0 and verbose:
print('unexpected keys:')
print(u)
model.to(device)
model.eval()
return model
@torch.no_grad()
def sample_model(input_im, model, sampler, precision, h, w, ddim_steps, n_samples, scale,
ddim_eta, x, y, z):
precision_scope = autocast if precision == 'autocast' else nullcontext
with precision_scope('cuda'):
with model.ema_scope():
c = model.get_learned_conditioning(input_im).tile(n_samples, 1, 1)
T = torch.tensor([math.radians(x), math.sin(
math.radians(y)), math.cos(math.radians(y)), z])
T = T[None, None, :].repeat(n_samples, 1, 1).to(c.device)
c = torch.cat([c, T], dim=-1)
c = model.cc_projection(c)
cond = {}
cond['c_crossattn'] = [c]
c_concat = model.encode_first_stage((input_im.to(c.device))).mode().detach()
cond['c_concat'] = [model.encode_first_stage((input_im.to(c.device))).mode().detach()
.repeat(n_samples, 1, 1, 1)]
if scale != 1.0:
uc = {}
uc['c_concat'] = [torch.zeros(n_samples, 4, h // 8, w // 8).to(c.device)]
uc['c_crossattn'] = [torch.zeros_like(c).to(c.device)]
else:
uc = None
shape = [4, h // 8, w // 8]
samples_ddim, _ = sampler.sample(S=ddim_steps,
conditioning=cond,
batch_size=n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
eta=ddim_eta,
x_T=None)
print(samples_ddim.shape)
# samples_ddim = torch.nn.functional.interpolate(samples_ddim, 64, mode='nearest', antialias=False)
x_samples_ddim = model.decode_first_stage(samples_ddim)
return torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0).cpu()
class CameraVisualizer:
def __init__(self, gradio_plot):
self._gradio_plot = gradio_plot
self._fig = None
self._polar = 0.0
self._azimuth = 0.0
self._radius = 0.0
self._raw_image = None
self._8bit_image = None
self._image_colorscale = None
def polar_change(self, value):
self._polar = value
# return self.update_figure()
def azimuth_change(self, value):
self._azimuth = value
# return self.update_figure()
def radius_change(self, value):
self._radius = value
# return self.update_figure()
def encode_image(self, raw_image):
'''
:param raw_image (H, W, 3) array of uint8 in [0, 255].
'''
# https://stackoverflow.com/questions/60685749/python-plotly-how-to-add-an-image-to-a-3d-scatter-plot
dum_img = Image.fromarray(np.ones((3, 3, 3), dtype='uint8')).convert('P', palette='WEB')
idx_to_color = np.array(dum_img.getpalette()).reshape((-1, 3))
self._raw_image = raw_image
self._8bit_image = Image.fromarray(raw_image).convert('P', palette='WEB', dither=None)
# self._8bit_image = Image.fromarray(raw_image.clip(0, 254)).convert(
# 'P', palette='WEB', dither=None)
self._image_colorscale = [
[i / 255.0, 'rgb({}, {}, {})'.format(*rgb)] for i, rgb in enumerate(idx_to_color)]
# return self.update_figure()
def update_figure(self):
fig = go.Figure()
if self._raw_image is not None:
(H, W, C) = self._raw_image.shape
x = np.zeros((H, W))
(y, z) = np.meshgrid(np.linspace(-1.0, 1.0, W), np.linspace(1.0, -1.0, H) * H / W)
print('x:', lo(x))
print('y:', lo(y))
print('z:', lo(z))
fig.add_trace(go.Surface(
x=x, y=y, z=z,
surfacecolor=self._8bit_image,
cmin=0,
cmax=255,
colorscale=self._image_colorscale,
showscale=False,
lighting_diffuse=1.0,
lighting_ambient=1.0,
lighting_fresnel=1.0,
lighting_roughness=1.0,
lighting_specular=0.3))
scene_bounds = 3.5
base_radius = 2.5
zoom_scale = 1.5 # Note that input radius offset is in [-0.5, 0.5].
fov_deg = 50.0
edges = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 3), (3, 4), (4, 1)]
input_cone = calc_cam_cone_pts_3d(
0.0, 0.0, base_radius, fov_deg) # (5, 3).
output_cone = calc_cam_cone_pts_3d(
self._polar, self._azimuth, base_radius + self._radius * zoom_scale, fov_deg) # (5, 3).
# print('input_cone:', lo(input_cone).v)
# print('output_cone:', lo(output_cone).v)
for (cone, clr, legend) in [(input_cone, 'green', 'Input view'),
(output_cone, 'blue', 'Target view')]:
for (i, edge) in enumerate(edges):
(x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
(y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
(z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
fig.add_trace(go.Scatter3d(
x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
line=dict(color=clr, width=3),
name=legend, showlegend=(i == 0)))
# text=(legend if i == 0 else None),
# textposition='bottom center'))
# hoverinfo='text',
# hovertext='hovertext'))
# Add label.
if cone[0, 2] <= base_radius / 2.0:
fig.add_trace(go.Scatter3d(
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] - 0.05], showlegend=False,
mode='text', text=legend, textposition='bottom center'))
else:
fig.add_trace(go.Scatter3d(
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] + 0.05], showlegend=False,
mode='text', text=legend, textposition='top center'))
# look at center of scene
fig.update_layout(
# width=640,
# height=480,
# height=400,
height=360,
autosize=True,
hovermode=False,
margin=go.layout.Margin(l=0, r=0, b=0, t=0),
showlegend=True,
legend=dict(
yanchor='bottom',
y=0.01,
xanchor='right',
x=0.99,
),
scene=dict(
aspectmode='manual',
aspectratio=dict(x=1, y=1, z=1.0),
camera=dict(
eye=dict(x=base_radius - 1.6, y=0.0, z=0.6),
center=dict(x=0.0, y=0.0, z=0.0),
up=dict(x=0.0, y=0.0, z=1.0)),
xaxis_title='',
yaxis_title='',
zaxis_title='',
xaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=False,
showgrid=True,
zeroline=False,
showbackground=True,
showspikes=False,
showline=False,
ticks=''),
yaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=False,
showgrid=True,
zeroline=False,
showbackground=True,
showspikes=False,
showline=False,
ticks=''),
zaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=False,
showgrid=True,
zeroline=False,
showbackground=True,
showspikes=False,
showline=False,
ticks='')))
self._fig = fig
return fig
def preprocess_image(models, input_im, preprocess):
'''
:param input_im (PIL Image).
:return input_im (H, W, 3) array in [0, 1].
'''
print('old input_im:', input_im.size)
start_time = time.time()
if preprocess:
input_im = load_and_preprocess(models['carvekit'], input_im)
input_im = (input_im / 255.0).astype(np.float32)
# (H, W, 3) array in [0, 1].
else:
input_im = input_im.resize([256, 256], Image.Resampling.LANCZOS)
input_im = np.asarray(input_im, dtype=np.float32) / 255.0
# (H, W, 4) array in [0, 1].
# old method: thresholding background, very important
# input_im[input_im[:, :, -1] <= 0.9] = [1., 1., 1., 1.]
# new method: apply correct method of compositing to avoid sudden transitions / thresholding
# (smoothly transition foreground to white background based on alpha values)
alpha = input_im[:, :, 3:4]
white_im = np.ones_like(input_im)
input_im = alpha * input_im + (1.0 - alpha) * white_im
input_im = input_im[:, :, 0:3]
# (H, W, 3) array in [0, 1].
print(f'Infer foreground mask (preprocess_image) took {time.time() - start_time:.3f}s.')
print('new input_im:', lo(input_im))
return input_im
def main_run(models, device, cam_vis, return_what,
x=0.0, y=0.0, z=0.0,
raw_im=None, preprocess=True,
scale=3.0, n_samples=4, ddim_steps=50, ddim_eta=1.0,
precision='fp32', h=256, w=256):
'''
:param raw_im (PIL Image).
'''
safety_checker_input = models['clip_fe'](raw_im, return_tensors='pt').to(device)
(image, has_nsfw_concept) = models['nsfw'](
images=np.ones((1, 3)), clip_input=safety_checker_input.pixel_values)
print('has_nsfw_concept:', has_nsfw_concept)
if np.any(has_nsfw_concept):
print('NSFW content detected.')
to_return = [None] * 10
description = ('### <span style="color:red"> Unfortunately, '
'potential NSFW content was detected, '
'which is not supported by our model. '
'Please try again with a different image. </span>')
if 'angles' in return_what:
to_return[0] = 0.0
to_return[1] = 0.0
to_return[2] = 0.0
to_return[3] = description
else:
to_return[0] = description
return to_return
else:
print('Safety check passed.')
input_im = preprocess_image(models, raw_im, preprocess)
# if np.random.rand() < 0.3:
# description = ('Unfortunately, a human, a face, or potential NSFW content was detected, '
# 'which is not supported by our model.')
# if vis_only:
# return (None, None, description)
# else:
# return (None, None, None, description)
show_in_im1 = (input_im * 255.0).astype(np.uint8)
show_in_im2 = Image.fromarray(show_in_im1)
if 'rand' in return_what:
x = int(np.round(np.arcsin(np.random.uniform(-1.0, 1.0)) * 160.0 / np.pi)) # [-80, 80].
y = int(np.round(np.random.uniform(-150.0, 150.0)))
z = 0.0
cam_vis.polar_change(x)
cam_vis.azimuth_change(y)
cam_vis.radius_change(z)
cam_vis.encode_image(show_in_im1)
new_fig = cam_vis.update_figure()
if 'vis' in return_what:
description = ('The viewpoints are visualized on the top right. '
'Click Run Generation to update the results on the bottom right.')
if 'angles' in return_what:
return (x, y, z, description, new_fig, show_in_im2)
else:
return (description, new_fig, show_in_im2)
elif 'gen' in return_what:
input_im = transforms.ToTensor()(input_im).unsqueeze(0).to(device)
input_im = input_im * 2 - 1
input_im = transforms.functional.resize(input_im, [h, w])
sampler = DDIMSampler(models['turncam'])
# used_x = -x # NOTE: Polar makes more sense in Basile's opinion this way!
used_x = x # NOTE: Set this way for consistency.
x_samples_ddim = sample_model(input_im, models['turncam'], sampler, precision, h, w,
ddim_steps, n_samples, scale, ddim_eta, used_x, y, z)
output_ims = []
for x_sample in x_samples_ddim:
x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
output_ims.append(Image.fromarray(x_sample.astype(np.uint8)))
description = None
if 'angles' in return_what:
return (x, y, z, description, new_fig, show_in_im2, output_ims)
else:
return (description, new_fig, show_in_im2, output_ims)
def calc_cam_cone_pts_3d(polar_deg, azimuth_deg, radius_m, fov_deg):
'''
:param polar_deg (float).
:param azimuth_deg (float).
:param radius_m (float).
:param fov_deg (float).
:return (5, 3) array of float with (x, y, z).
'''
polar_rad = np.deg2rad(polar_deg)
azimuth_rad = np.deg2rad(azimuth_deg)
fov_rad = np.deg2rad(fov_deg)
polar_rad = -polar_rad # NOTE: Inverse of how used_x relates to x.
# Camera pose center:
cam_x = radius_m * np.cos(azimuth_rad) * np.cos(polar_rad)
cam_y = radius_m * np.sin(azimuth_rad) * np.cos(polar_rad)
cam_z = radius_m * np.sin(polar_rad)
# Obtain four corners of camera frustum, assuming it is looking at origin.
# First, obtain camera extrinsics (rotation matrix only):
camera_R = np.array([[np.cos(azimuth_rad) * np.cos(polar_rad),
-np.sin(azimuth_rad),
-np.cos(azimuth_rad) * np.sin(polar_rad)],
[np.sin(azimuth_rad) * np.cos(polar_rad),
np.cos(azimuth_rad),
-np.sin(azimuth_rad) * np.sin(polar_rad)],
[np.sin(polar_rad),
0.0,
np.cos(polar_rad)]])
# print('camera_R:', lo(camera_R).v)
# Multiply by corners in camera space to obtain go to space:
corn1 = [-1.0, np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
corn2 = [-1.0, -np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
corn3 = [-1.0, -np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
corn4 = [-1.0, np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
corn1 = np.dot(camera_R, corn1)
corn2 = np.dot(camera_R, corn2)
corn3 = np.dot(camera_R, corn3)
corn4 = np.dot(camera_R, corn4)
# Now attach as offset to actual 3D camera position:
corn1 = np.array(corn1) / np.linalg.norm(corn1, ord=2)
corn_x1 = cam_x + corn1[0]
corn_y1 = cam_y + corn1[1]
corn_z1 = cam_z + corn1[2]
corn2 = np.array(corn2) / np.linalg.norm(corn2, ord=2)
corn_x2 = cam_x + corn2[0]
corn_y2 = cam_y + corn2[1]
corn_z2 = cam_z + corn2[2]
corn3 = np.array(corn3) / np.linalg.norm(corn3, ord=2)
corn_x3 = cam_x + corn3[0]
corn_y3 = cam_y + corn3[1]
corn_z3 = cam_z + corn3[2]
corn4 = np.array(corn4) / np.linalg.norm(corn4, ord=2)
corn_x4 = cam_x + corn4[0]
corn_y4 = cam_y + corn4[1]
corn_z4 = cam_z + corn4[2]
xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4]
ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4]
zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4]
return np.array([xs, ys, zs]).T
def run_demo(
device_idx=_GPU_INDEX,
ckpt='105000.ckpt',
config='configs/sd-objaverse-finetune-c_concat-256.yaml'):
print('sys.argv:', sys.argv)
if len(sys.argv) > 1:
print('old device_idx:', device_idx)
device_idx = int(sys.argv[1])
print('new device_idx:', device_idx)
device = f'cuda:{device_idx}'
config = OmegaConf.load(config)
# Instantiate all models beforehand for efficiency.
models = dict()
print('Instantiating LatentDiffusion...')
models['turncam'] = load_model_from_config(config, ckpt, device=device)
print('Instantiating Carvekit HiInterface...')
models['carvekit'] = create_carvekit_interface()
print('Instantiating StableDiffusionSafetyChecker...')
models['nsfw'] = StableDiffusionSafetyChecker.from_pretrained(
'CompVis/stable-diffusion-safety-checker').to(device)
print('Instantiating AutoFeatureExtractor...')
models['clip_fe'] = AutoFeatureExtractor.from_pretrained(
'CompVis/stable-diffusion-safety-checker')
# Reduce NSFW false positives.
# NOTE: At the time of writing, and for diffusers 0.12.1, the default parameters are:
# models['nsfw'].concept_embeds_weights:
# [0.1800, 0.1900, 0.2060, 0.2100, 0.1950, 0.1900, 0.1940, 0.1900, 0.1900, 0.2200, 0.1900,
# 0.1900, 0.1950, 0.1984, 0.2100, 0.2140, 0.2000].
# models['nsfw'].special_care_embeds_weights:
# [0.1950, 0.2000, 0.2200].
# We multiply all by some factor > 1 to make them less likely to be triggered.
models['nsfw'].concept_embeds_weights *= 1.07
models['nsfw'].special_care_embeds_weights *= 1.07
with open('instructions.md', 'r') as f:
article = f.read()
# NOTE: Examples must match inputs
# [polar_slider, azimuth_slider, radius_slider, image_block,
# preprocess_chk, scale_slider, samples_slider, steps_slider].
example_fns = ['1_blue_arm.png', '2_cybercar.png', '3_sushi.png', '4_blackarm.png',
'5_cybercar.png', '6_burger.png', '7_london.png', '8_motor.png']
num_examples = len(example_fns)
example_fps = [os.path.join(os.path.dirname(__file__), 'configs', x) for x in example_fns]
example_angles = [(-40.0, -65.0, 0.0), (-30.0, 90.0, 0.0), (45.0, -15.0, 0.0), (-75.0, 100.0, 0.0),
(-40.0, -75.0, 0.0), (-45.0, 0.0, 0.0), (-55.0, 90.0, 0.0), (-20.0, 125.0, 0.0)]
examples_full = [[*example_angles[i], example_fps[i], True, 3, 4, 50] for i in range(num_examples)]
print('examples_full:', examples_full)
# Compose demo layout & data flow.
demo = gr.Blocks(title=_TITLE)
with demo:
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column(scale=0.9, variant='panel'):
image_block = gr.Image(type='pil', image_mode='RGBA',
label='Input image of single object')
preprocess_chk = gr.Checkbox(
True, label='Preprocess image automatically (remove background and recenter object)')
# info='If enabled, the uploaded image will be preprocessed to remove the background and recenter the object by cropping and/or padding as necessary. '
# 'If disabled, the image will be used as-is, *BUT* a fully transparent or white background is required.'),
gr.Markdown('*Try camera position presets:*')
with gr.Row():
left_btn = gr.Button('View from the Left', variant='primary')
above_btn = gr.Button('View from Above', variant='primary')
right_btn = gr.Button('View from the Right', variant='primary')
with gr.Row():
random_btn = gr.Button('Random Rotation', variant='primary')
below_btn = gr.Button('View from Below', variant='primary')
behind_btn = gr.Button('View from Behind', variant='primary')
gr.Markdown('*Control camera position manually:*')
polar_slider = gr.Slider(
-90, 90, value=0, step=5, label='Polar angle (vertical rotation in degrees)')
# info='Positive values move the camera down, while negative values move the camera up.')
azimuth_slider = gr.Slider(
-180, 180, value=0, step=5, label='Azimuth angle (horizontal rotation in degrees)')
# info='Positive values move the camera right, while negative values move the camera left.')
radius_slider = gr.Slider(
-0.5, 0.5, value=0.0, step=0.1, label='Zoom (relative distance from center)')
# info='Positive values move the camera further away, while negative values move the camera closer.')
samples_slider = gr.Slider(1, 8, value=4, step=1,
label='Number of samples to generate')
with gr.Accordion('Advanced options', open=False):
scale_slider = gr.Slider(0, 30, value=3, step=1,
label='Diffusion guidance scale')
steps_slider = gr.Slider(5, 200, value=75, step=5,
label='Number of diffusion inference steps')
with gr.Row():
vis_btn = gr.Button('Visualize Angles', variant='secondary')
run_btn = gr.Button('Run Generation', variant='primary')
desc_output = gr.Markdown(
'The results will appear on the right.', visible=_SHOW_DESC)
with gr.Column(scale=1.1, variant='panel'):
vis_output = gr.Plot(
label='Relationship between input (green) and output (blue) camera poses')
gen_output = gr.Gallery(label='Generated images from specified new viewpoint')
gen_output.style(grid=2)
preproc_output = gr.Image(type='pil', image_mode='RGB',
label='Preprocessed input image', visible=_SHOW_INTERMEDIATE)
cam_vis = CameraVisualizer(vis_output)
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
fn=partial(main_run, models, device, cam_vis, 'gen'),
inputs=[polar_slider, azimuth_slider, radius_slider,
image_block, preprocess_chk,
scale_slider, samples_slider, steps_slider],
outputs=[desc_output, vis_output, preproc_output, gen_output],
cache_examples=True,
run_on_click=True,
)
gr.Markdown(article)
# NOTE: I am forced to update vis_output for these preset buttons,
# because otherwise the gradio plot always resets the plotly 3D viewpoint for some reason,
# which might confuse the user into thinking that the plot has been updated too.
vis_btn.click(fn=partial(main_run, models, device, cam_vis, 'vis'),
inputs=[polar_slider, azimuth_slider, radius_slider,
image_block, preprocess_chk],
outputs=[desc_output, vis_output, preproc_output])
run_btn.click(fn=partial(main_run, models, device, cam_vis, 'gen'),
inputs=[polar_slider, azimuth_slider, radius_slider,
image_block, preprocess_chk,
scale_slider, samples_slider, steps_slider],
outputs=[desc_output, vis_output, preproc_output, gen_output])
# NEW:
preset_inputs = [image_block, preprocess_chk,
scale_slider, samples_slider, steps_slider]
preset_outputs = [polar_slider, azimuth_slider, radius_slider,
desc_output, vis_output, preproc_output, gen_output]
left_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
0.0, -90.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
above_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
-90.0, 0.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
right_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
0.0, 90.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
random_btn.click(fn=partial(main_run, models, device, cam_vis, 'rand_angles_gen',
-1.0, -1.0, -1.0),
inputs=preset_inputs, outputs=preset_outputs)
below_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
90.0, 0.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
behind_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
0.0, 180.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
demo.launch(enable_queue=True)
if __name__ == '__main__':
fire.Fire(run_demo)