import gradio as gr import numpy as np import random import spaces import torch from diffusers import FluxPriorReduxPipeline, FluxPipeline from diffusers.utils import load_image MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained( "black-forest-labs/FLUX.1-Redux-dev", torch_dtype=torch.bfloat16 ).to("cuda") pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev" , text_encoder=None, text_encoder_2=None, torch_dtype=torch.bfloat16 ).to("cuda") @spaces.GPU def infer(control_image, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) pipe_prior_output = pipe_prior_redux(control_image) images = pipe( guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=torch.Generator("cpu").manual_seed(seed), **pipe_prior_output, ).images[0] return images, seed css=""" #col-container { margin: 0 auto; max-width: 960px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 Redux [dev] An adapter for FLUX [dev] to create image variations [[non-commercial license](https://huggingface.co./black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co./black-forest-labs/FLUX.1-dev)] """) with gr.Row(): with gr.Column(): input_image = gr.Image(label="Image to create variations", type="pil") run_button = gr.Button("Run") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.on( triggers=[run_button.click], fn = infer, inputs = [input_image, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed] ) demo.launch()