bkhmsi's picture
initialized repo
d36d50b
raw
history blame
2.49 kB
import os
from pyarabic.araby import tokenize, strip_tashkeel
import numpy as np
import torch as T
from torch.utils.data import Dataset
from data_utils import DatasetUtils
import diac_utils as du
class DataRetriever(Dataset):
def __init__(self, data_utils : DatasetUtils, lines: list):
super(DataRetriever).__init__()
self.data_utils = data_utils
self.lines = lines
def preprocess(self, data, dtype=T.long):
return [T.tensor(np.array(x), dtype=dtype) for x in data]
def __len__(self):
return len(self.lines)
def __getitem__(self, idx):
word_x, char_x, diac_x, diac_y = self.create_sentence(idx)
return self.preprocess((word_x, char_x, diac_x)), T.tensor(diac_y, dtype=T.long), T.tensor(diac_y, dtype=T.long)
def create_sentence(self, idx):
line = self.lines[idx]
tokens = tokenize(line.strip())
word_x = []
char_x = []
diac_x = []
diac_y = []
diac_y_tmp = []
for word in tokens:
word = du.strip_unknown_tashkeel(word)
word_chars = du.split_word_on_characters_with_diacritics(word)
cx, cy, cy_3head = du.create_label_for_word(word_chars)
word_strip = strip_tashkeel(word)
word_x += [self.data_utils.w2idx[word_strip] if word_strip in self.data_utils.w2idx else self.data_utils.w2idx["<pad>"]]
char_x += [self.data_utils.pad_and_truncate_sequence(cx, self.data_utils.max_word_len)]
diac_y += [self.data_utils.pad_and_truncate_sequence(cy, self.data_utils.max_word_len, pad=self.data_utils.pad_target_val)]
diac_y_tmp += [self.data_utils.pad_and_truncate_sequence(cy_3head, self.data_utils.max_word_len, pad=[self.data_utils.pad_target_val]*3)]
diac_x = self.data_utils.create_decoder_input(diac_y_tmp)
max_slen = self.data_utils.max_sent_len
max_wlen = self.data_utils.max_word_len
p_val = self.data_utils.pad_val
pt_val = self.data_utils.pad_target_val
word_x = self.data_utils.pad_and_truncate_sequence(word_x, max_slen)
char_x = self.data_utils.pad_and_truncate_sequence(char_x, max_slen, pad=[p_val]*max_wlen)
diac_x = self.data_utils.pad_and_truncate_sequence(diac_x, max_slen, pad=[[p_val]*8]*max_wlen)
diac_y = self.data_utils.pad_and_truncate_sequence(diac_y, max_slen, pad=[pt_val]*max_wlen)
return word_x, char_x, diac_x, diac_y