CNN_MLP_2 / app.py
bgaspra's picture
Update app.py
bd04de1 verified
import os
import requests
from tqdm import tqdm
from datasets import load_dataset
import numpy as np
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
from tensorflow.keras.preprocessing import image
from tensorflow.keras.layers import Dense, Input, Concatenate, Embedding, Flatten
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.preprocessing import LabelEncoder
import joblib
from PIL import UnidentifiedImageError, Image
import gradio as gr
# Optimized Constants
MAX_TEXT_LENGTH = 100
EMBEDDING_DIM = 50
IMAGE_SIZE = 160
BATCH_SIZE = 64
# Store model examples
model_examples = {}
def load_and_preprocess_data(subset_size=20000):
# Load dataset
dataset = load_dataset("thefcraft/civitai-stable-diffusion-337k")
dataset_subset = dataset['train'].shuffle(seed=42).select(range(subset_size))
# Filter out NSFW content
dataset_subset = dataset_subset.filter(lambda x: not x['nsfw'])
# Store example images for each model
for item in dataset_subset:
if item['Model'] not in model_examples:
model_examples[item['Model']] = item['url']
return dataset_subset
def process_text_data(dataset_subset):
# Combine prompt and negative prompt without user input
text_data = ["default prompt" for _ in dataset_subset]
tokenizer = Tokenizer(num_words=10000)
tokenizer.fit_on_texts(text_data)
sequences = tokenizer.texts_to_sequences(text_data)
text_data_padded = pad_sequences(sequences, maxlen=MAX_TEXT_LENGTH)
return text_data_padded, tokenizer
def download_image(url):
try:
response = requests.get(url, timeout=5)
response.raise_for_status()
return Image.open(requests.get(url, stream=True).raw)
except:
return None
def process_image_data(dataset_subset):
image_dir = 'civitai_images'
os.makedirs(image_dir, exist_ok=True)
image_data = []
valid_indices = []
for idx, sample in enumerate(tqdm(dataset_subset)):
img_url = sample['url']
img_path = os.path.join(image_dir, os.path.basename(img_url))
try:
response = requests.get(img_url, timeout=5)
response.raise_for_status()
if 'image' not in response.headers['Content-Type']:
continue
with open(img_path, 'wb') as f:
f.write(response.content)
img = image.load_img(img_path, target_size=(IMAGE_SIZE, IMAGE_SIZE))
img_array = image.img_to_array(img)
img_array = preprocess_input(img_array)
image_data.append(img_array)
valid_indices.append(idx)
except Exception as e:
continue
return np.array(image_data), valid_indices
def create_multimodal_model(num_words, num_classes):
image_input = Input(shape=(IMAGE_SIZE, IMAGE_SIZE, 3))
cnn_base = ResNet50(weights='imagenet', include_top=False, pooling='avg')
for layer in cnn_base.layers[:-10]:
layer.trainable = False
cnn_features = cnn_base(image_input)
text_input = Input(shape=(MAX_TEXT_LENGTH,))
embedding_layer = Embedding(num_words, EMBEDDING_DIM)(text_input)
flatten_text = Flatten()(embedding_layer)
text_features = Dense(128, activation='relu')(flatten_text)
combined = Concatenate()([cnn_features, text_features])
x = Dense(256, activation='relu')(combined)
output = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=[image_input, text_input], outputs=output)
return model
def train_model():
dataset_subset = load_and_preprocess_data()
text_data_padded, tokenizer = process_text_data(dataset_subset)
image_data, valid_indices = process_image_data(dataset_subset)
text_data_padded = text_data_padded[valid_indices]
model_names = [dataset_subset[i]['Model'] for i in valid_indices]
label_encoder = LabelEncoder()
encoded_labels = label_encoder.fit_transform(model_names)
model = create_multimodal_model(
num_words=10000,
num_classes=len(label_encoder.classes_)
)
model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
history = model.fit(
[image_data, text_data_padded],
encoded_labels,
batch_size=BATCH_SIZE,
epochs=3,
validation_split=0.2
)
model.save('multimodal_model.keras')
joblib.dump(tokenizer, 'tokenizer.pkl')
joblib.dump(label_encoder, 'label_encoder.pkl')
# Save model examples
joblib.dump(model_examples, 'model_examples.pkl')
return model, tokenizer, label_encoder
def get_recommendations(image_input, model, tokenizer, label_encoder, top_k=5):
img_array = image.img_to_array(image_input)
img_array = tf.image.resize(img_array, (IMAGE_SIZE, IMAGE_SIZE))
img_array = preprocess_input(img_array)
img_array = np.expand_dims(img_array, axis=0)
# Use default text input
text_sequence = tokenizer.texts_to_sequences(["default prompt"])
text_padded = pad_sequences(text_sequence, maxlen=MAX_TEXT_LENGTH)
predictions = model.predict([img_array, text_padded])
top_indices = np.argsort(predictions[0])[-top_k:][::-1]
recommendations = []
for idx in top_indices:
model_name = label_encoder.inverse_transform([idx])[0]
confidence = predictions[0][idx]
if model_name in model_examples:
example_image = download_image(model_examples[model_name])
if example_image:
recommendations.append((model_name, confidence, example_image))
return recommendations
def create_gradio_interface():
model = tf.keras.models.load_model('multimodal_model.keras')
tokenizer = joblib.load('tokenizer.pkl')
label_encoder = joblib.load('label_encoder.pkl')
model_examples_data = joblib.load('model_examples.pkl')
def predict(img):
recommendations = get_recommendations(img, model, tokenizer, label_encoder)
result_text = ""
result_images = []
for model_name, conf, example_img in recommendations:
result_text += f"Model: {model_name}\n"
result_images.append(example_img)
return [result_text] + result_images
outputs = [gr.Textbox(label="Recommended Models")] + [gr.Image(label=f"Example {i+1}") for i in range(5)]
interface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil", label="Upload Image"),
outputs=outputs,
title="AI Model Recommendation System",
description="Upload an image to get model recommendations with examples"
)
return interface
if __name__ == "__main__":
if not os.path.exists('multimodal_model.keras'):
print("Training new model...")
model, tokenizer, label_encoder = train_model()
print("Training completed!")
else:
print("Loading existing model...")
interface = create_gradio_interface()
interface.launch()