text-to-video / app.py
bestoai's picture
updated the label convert voice to text (#1)
eb47e29 verified
raw
history blame
7.86 kB
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
from moviepy.editor import AudioFileClip
# Get all available voices
async def get_voices():
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} ({v['Locale']}, {v['Gender']})": v['ShortName'] for v in voices}
# Text to speech functionality
async def text_to_speech(text, voice, rate, pitch, output_path):
if not text.strip():
return None, gr.Warning("Please enter the text to convert into voice")
if not voice:
return None, gr.Warning("Please select a voice.")
voice_short_name = voice.split(" (")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
# Save to the specified output path
await communicate.save(output_path)
return output_path, None
# async def text_to_speech(text, voice, rate, pitch):
# if not text.strip():
# return None, gr.Warning("Please enter the text to convert.")
# if not voice:
# return None, gr.Warning("Please select a voice.")
# voice_short_name = voice.split(" (")[0]
# rate_str = f"{rate:+d}%"
# pitch_str = f"{pitch:+d}Hz"
# communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
# tmp_path = tmp_file.name
# await communicate.save(tmp_path)
# return tmp_path, None
# Generate SRT file with specified lines of subtitles
def generate_srt(words, audio_duration, srt_path, num_lines):
with open(srt_path, 'w', encoding='utf-8') as srt_file:
total_segments = max(len(words) // (5 * num_lines), 1) # Ensure at least one segment
segment_duration = audio_duration / total_segments
current_time = 0
for i in range(0, len(words), 5 * num_lines):
lines = []
for j in range(num_lines):
line_start = i + j * 5
line_end = line_start + 5
line = ' '.join(words[line_start:line_end])
if line:
lines.append(line)
start_time = current_time
end_time = start_time + segment_duration
start_time_str = format_srt_time(start_time)
end_time_str = format_srt_time(end_time)
srt_file.write(f"{i // (5 * num_lines) + 1}\n{start_time_str} --> {end_time_str}\n" + "\n".join(lines) + "\n\n")
current_time += segment_duration
return srt_path
# def generate_srt(words, audio_duration, srt_path, num_lines):
# with open(srt_path, 'w', encoding='utf-8') as srt_file:
# divisor = len(words) // (5 * num_lines)
# if divisor == 0:
# segment_duration = audio_duration # Use full duration as fallback
# else:
# segment_duration = audio_duration / divisor # Calculate duration per segment
# current_time = 0
# for i in range(0, len(words), 5 * num_lines):
# lines = []
# for j in range(num_lines):
# line = ' '.join(words[i + j * 5:i + (j + 1) * 5])
# if line:
# lines.append(line)
# start_time = current_time
# end_time = start_time + segment_duration
# start_time_str = format_srt_time(start_time)
# end_time_str = format_srt_time(end_time)
# srt_file.write(f"{i // (5 * num_lines) + 1}\n{start_time_str} --> {end_time_str}\n" + "\n".join(lines) + "\n\n")
# current_time += segment_duration
# return srt_path
def format_srt_time(seconds):
millis = int((seconds - int(seconds)) * 1000)
seconds = int(seconds)
minutes = seconds // 60
hours = minutes // 60
minutes %= 60
seconds %= 60
return f"{hours:02}:{minutes:02}:{seconds:02},{millis:03}"
# Text to audio and SRT functionality
async def text_to_audio_and_srt(text, voice, rate, pitch, num_lines, output_audio_path, output_srt_path):
audio_path, warning = await text_to_speech(text, voice, rate, pitch, output_audio_path)
if warning:
return None, None, warning
audio_clip = AudioFileClip(audio_path)
audio_duration = audio_clip.duration
# Generate SRT file based on the entire text
words = text.split()
generate_srt(words, audio_duration, output_srt_path, num_lines)
return audio_path, output_srt_path, None
# async def text_to_audio_and_srt(text, voice, rate, pitch, num_lines):
# audio_path, warning = await text_to_speech(text, voice, rate, pitch)
# if warning:
# return None, None, warning
# audio_clip = AudioFileClip(audio_path)
# audio_duration = audio_clip.duration
# # Generate SRT file based on the entire text
# base_name = os.path.splitext(audio_path)[0]
# srt_path = f"{base_name}_subtitle.srt"
# words = text.split()
# generate_srt(words, audio_duration, srt_path, num_lines)
# return audio_path, srt_path, None
# Gradio interface function
def tts_interface(text, voice, rate, pitch, num_lines, output_audio_path="output_audio.mp3", output_srt_path="output_subtitle.srt"):
if not text.strip():
return None, None, gr.Warning("Text input cannot be empty.")
if num_lines <= 0:
return None, None, gr.Warning("Number of SRT lines must be greater than zero.")
try:
audio_path, srt_path, warning = asyncio.run(
text_to_audio_and_srt(text, voice, rate, pitch, num_lines, output_audio_path, output_srt_path)
)
return audio_path, srt_path, warning
except Exception as e:
return None, None, gr.Warning(f"An error occurred: {e}")
# def tts_interface(text, voice, rate, pitch, num_lines):
# audio_path, srt_path, warning = asyncio.run(text_to_audio_and_srt(text, voice, rate, pitch, num_lines))
# return audio_path, srt_path, warning
# Create Gradio app
async def create_demo():
voices = await get_voices()
with gr.Blocks() as demo:
gr.Markdown(
"""
<h1 style="text-align: center; color: #333;">Text to Speech with Subtitles</h1>
<p style="text-align: center; color: #555;">Convert your text to natural-sounding speech and generate subtitles (SRT) for your audio.</p>
""",
elem_id="header"
)
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Input Text", lines=5, placeholder="Enter text here...")
voice_dropdown = gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value="")
rate_slider = gr.Slider(minimum=-50, maximum=50, value=0, label="Rate Adjustment (%)", step=1)
pitch_slider = gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1)
num_lines_slider = gr.Slider(minimum=1, maximum=5, value=2, label="Number of SRT Lines", step=1)
generate_button = gr.Button("Generate Audio and Subtitles", variant="primary")
with gr.Column():
output_audio = gr.Audio(label="Generated Audio", type="filepath")
output_srt = gr.File(label="Generated SRT", file_count="single")
warning_msg = gr.Markdown(label="Warning", visible=False)
generate_button.click(
fn=tts_interface,
inputs=[text_input, voice_dropdown, rate_slider, pitch_slider, num_lines_slider],
outputs=[output_audio, output_srt, warning_msg]
)
return demo
# Run the app
if __name__ == "__main__":
demo = asyncio.run(create_demo())
demo.launch(show_error=True)