benhaotang commited on
Commit
df667f5
·
verified ·
1 Parent(s): 3e8cb23

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -54
app.py CHANGED
@@ -1,64 +1,76 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
  ),
59
  ],
 
 
 
 
 
 
 
 
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline, AutoTokenizer, BitsAndBytesConfig, AutoModelForCausalLM
3
+ import torch
4
+ import spaces
5
 
6
+ MODEL_PATH = "benhaotang/phi4-qwq-sky-t1"
7
+ MODEL_URL = f"https://huggingface.co/{MODEL_PATH}"
 
 
8
 
9
+ def load_model():
10
+ bnb_config = BitsAndBytesConfig(
11
+ load_in_8bit=False,
12
+ llm_int8_enable_fp32_cpu_offload=True
13
+ )
14
+
15
+ model = AutoModelForCausalLM.from_pretrained(
16
+ MODEL_PATH,
17
+ device_map="auto",
18
+ torch_dtype=torch.float16,
19
+ offload_folder="offload_folder",
20
+ quantization_config=bnb_config
21
+ )
22
+
23
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
24
+
25
+ # Create pipeline
26
+ pipe = pipeline(
27
+ "text-generation",
28
+ model=model,
29
+ tokenizer=tokenizer,
30
+ device_map="auto",
31
+ )
32
+
33
+ return pipe
34
 
35
+ pipe = load_model()
 
 
 
 
 
 
 
 
36
 
37
+ @spaces.GPU(duration=110)
38
+ def generate_response(prompt, max_length=1024):
39
+ # Convert prompt into messages format
40
+ messages = [
41
+ {"role": "system", "content": "You are a helpful AI asistent. You always think step by step."},
42
+ {"role": "user", "content": prompt}
43
+ ]
44
+
45
+ # Generate response using pipeline
46
+ outputs = pipe(messages, max_new_tokens=max_length)
47
+
48
+ # Extract the generated text
49
+ response = outputs[0]["generated_text"]
50
+
51
+ # Since pipeline returns the full conversation, we want to extract just the response
52
+ # Split by the prompt and take the last part
53
+ response_only = response.split(prompt)[-1].strip()
54
+
55
+ return response_only
56
 
57
+ demo = gr.Interface(
58
+ fn=generate_response,
59
+ inputs=[
60
+ gr.Textbox(
61
+ label="Enter your question",
62
+ placeholder="Ask me anything...",
63
+ lines=5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  ),
65
  ],
66
+ outputs=gr.Textbox(label="Response", lines=10),
67
+ title="benhaotang/phi4-qwq-sky-t1",
68
+ description=f""" To achieve CoT and science reasoning on small scale
69
+
70
+ Model: [benhaotang/phi4-qwq-sky-t1]({MODEL_URL})""",
71
+ examples=[
72
+ ["For a scalar field theory with interaction Lagrangian $\mathcal{L}_{int} = g\phi^3 + \lambda\phi^4$:\n 1.Enumerate all possible 1-loop Feynman diagrams contributing to a 2-to-2 scattering process\n2.For each diagram, write down its corresponding amplitude\n3. Provide Mathematica code to calculate these loop amplitudes\n Please explain your reasoning step by step."]
73
+ ]
74
  )
75
 
76
+ demo.launch()