|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<meta charset="utf-8"> |
|
<meta name="viewport" content="width=device-width, initial-scale=1"> |
|
<title>Gradio-Lite: Serverless Gradio Running Entirely in Your Browser</title> |
|
<meta name="description" content="Gradio-Lite: Serverless Gradio Running Entirely in Your Browser"> |
|
|
|
<script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script> |
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" /> |
|
|
|
<style> |
|
html, body { |
|
margin: 0; |
|
padding: 0; |
|
height: 100%; |
|
} |
|
</style> |
|
</head> |
|
<body> |
|
<gradio-lite> |
|
<gradio-file name="app.py" entrypoint> |
|
from transformers_js import import_transformers_js, as_url |
|
import gradio as gr |
|
|
|
|
|
# Reference: https://huggingface.co./spaces/Xenova/yolov9-web/blob/main/index.js |
|
|
|
IMAGE_SIZE = 256; |
|
|
|
transformers = await import_transformers_js() |
|
AutoProcessor = transformers.AutoProcessor |
|
AutoModel = transformers.AutoModel |
|
RawImage = transformers.RawImage |
|
|
|
processor = await AutoProcessor.from_pretrained('Xenova/yolov9-c') |
|
|
|
# For this demo, we resize the image to IMAGE_SIZE x IMAGE_SIZE |
|
processor.feature_extractor.size = { "width": IMAGE_SIZE, "height": IMAGE_SIZE } |
|
|
|
model = await AutoModel.from_pretrained('Xenova/yolov9-c') |
|
|
|
|
|
async def detect(image_path): |
|
image = await RawImage.read(image_path) |
|
|
|
processed_input = await processor(image) |
|
|
|
result = await model(images=processed_input["pixel_values"]) |
|
|
|
outputs = result["outputs"] # Tensor |
|
np_outputs = outputs.to_numpy() # [xmin, ymin, xmax, ymax, score, id][] |
|
gradio_labels = [ |
|
# List[Tuple[numpy.ndarray | Tuple[int, int, int, int], str]] |
|
( |
|
( |
|
int(xmin * image.width / IMAGE_SIZE), |
|
int(ymin * image.height / IMAGE_SIZE), |
|
int(xmax * image.width / IMAGE_SIZE), |
|
int(ymax * image.height / IMAGE_SIZE), |
|
), |
|
model.config.id2label[str(int(id))], |
|
) |
|
for xmin, ymin, xmax, ymax, score, id in np_outputs |
|
] |
|
|
|
annotated_image_data = image_path, gradio_labels |
|
return annotated_image_data, np_outputs |
|
|
|
demo = gr.Interface( |
|
detect, |
|
gr.Image(type="filepath"), |
|
[ |
|
gr.AnnotatedImage(), |
|
gr.JSON(), |
|
], |
|
examples=[ |
|
["cats.jpg"], |
|
["city-streets.jpg"], |
|
] |
|
) |
|
|
|
demo.launch() |
|
</gradio-file> |
|
|
|
<gradio-file name="cats.jpg" url="https://huggingface.co./datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg" /> |
|
<gradio-file name="city-streets.jpg" url="https://huggingface.co./datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg" /> |
|
|
|
<gradio-requirements> |
|
transformers_js_py |
|
</gradio-requirements> |
|
</gradio-lite> |
|
</body> |
|
</html> |
|
|