File size: 9,652 Bytes
8553d06
 
eeb88fb
2a2ba62
bc925b6
 
4301eca
8b2c873
 
 
 
 
bc925b6
 
eeb88fb
 
 
8b2c873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc925b6
8b2c873
 
bc925b6
 
 
 
 
 
 
 
 
 
 
eeb88fb
8c04f42
8b2c873
bc925b6
8c04f42
 
 
bc925b6
8b2c873
8c04f42
 
 
bc925b6
8b2c873
8c04f42
8b2c873
8c04f42
 
 
bc925b6
8c04f42
 
bc925b6
8c04f42
 
 
 
bc925b6
8c04f42
 
eeb88fb
 
 
bc925b6
 
 
eeb88fb
6a59158
eeb88fb
 
 
 
6a59158
eeb88fb
bc925b6
eeb88fb
 
 
 
 
bc925b6
eeb88fb
bc925b6
2a2ba62
 
 
eeb88fb
4301eca
eeb88fb
2a2ba62
bc925b6
 
 
 
 
 
 
2a2ba62
8c04f42
bc925b6
 
 
 
 
 
 
 
 
 
2a2ba62
bc925b6
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb88fb
bc925b6
eeb88fb
bc925b6
eeb88fb
bc925b6
 
 
 
 
 
 
 
 
eeb88fb
 
 
 
bc925b6
4301eca
8b2c873
2a2ba62
4301eca
 
8b2c873
1f300cb
4301eca
09497a7
4301eca
1f300cb
 
bc925b6
4301eca
bc925b6
09497a7
 
bc925b6
 
4301eca
 
bc925b6
1f300cb
 
 
bc925b6
 
1f300cb
bc925b6
4301eca
09497a7
4301eca
 
2a2ba62
bc925b6
1f300cb
bc925b6
 
 
 
 
 
 
 
 
 
 
 
eeb88fb
 
 
 
8553d06
 
 
bc925b6
8553d06
 
 
bc925b6
4301eca
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import pandas as pd
import json
from typing import Dict, Any, Tuple
import os
from constants import MODEL_NAME_MAP, DIMENSION_NAME_MAP, KEYWORD_NAME_MAP, MODEL_URLS, BASE_MODEL_GROUPS


class MEGABenchEvalDataLoader:
    def __init__(self, base_path):
        self.base_path = base_path
        # Load both model and summary data at once
        self.KEYWORD_DATA, self.SUMMARY_DATA = self._load_data()
        # Add loading of self-reported results
        self.SELF_REPORTED = self._load_self_reported()
        self.SUPER_GROUPS = self._initialize_super_groups()
        self.MODEL_GROUPS = self._initialize_model_groups()

    def _get_base_path(self) -> str:
        raise NotImplementedError("Subclasses must implement _get_base_path")

    def _load_data(self) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        summary_data = {}
        keyword_data = {}
        model_folders = [f for f in os.listdir(self.base_path) if os.path.isdir(os.path.join(self.base_path, f))]
        for model_name in model_folders:
            model_path = f"{self.base_path}/{model_name}/summary_and_keyword_stats.json"
            with open(model_path, "r") as f:
                data = json.load(f)
                if "keyword_stats" in data:
                    keyword_data[model_name] = data["keyword_stats"]
                if "model_summary" in data:
                    summary_data[model_name] = data["model_summary"]

        return keyword_data, summary_data

    def _load_self_reported(self) -> Dict[str, float]:
        try:
            with open(os.path.join(self.base_path, "self_reported.json"), "r") as f:
                return json.load(f)
        except FileNotFoundError:
            print(
                "Warning: No self-reported file found at",
                os.path.join(os.path.dirname(self.base_path), "self_reported.json"),
            )
            return {}

    def _initialize_super_groups(self):
        # Get a sample model to access the structure
        sample_model = next(iter(self.KEYWORD_DATA))

        # Create groups with task counts
        groups = {}
        self.keyword_display_map = {}  # Add this map to store display-to-original mapping

        for dim in self.KEYWORD_DATA[sample_model]:
            dim_name = DIMENSION_NAME_MAP[dim]
            # Create a list of tuples (display_name, count, keyword) for sorting
            keyword_info = []

            for keyword in self.KEYWORD_DATA[sample_model][dim]:
                # Get the task count for this keyword
                task_count = self.KEYWORD_DATA[sample_model][dim][keyword]["count"]
                original_name = KEYWORD_NAME_MAP.get(keyword, keyword)
                display_name = f"{original_name}({task_count})"
                keyword_info.append((display_name, task_count, keyword))

            # Sort by count (descending) and then by display name (for ties)
            keyword_info.sort(key=lambda x: (-x[1], x[0]))

            # Store sorted display names and update mapping
            groups[dim_name] = [info[0] for info in keyword_info]
            for display_name, _, keyword in keyword_info:
                self.keyword_display_map[display_name] = keyword

        # Sort based on predefined order
        order = ["Application", "Skills", "Output Format", "Input Format", "Visual Input Number"]
        return {k: groups[k] for k in order if k in groups}

    def _initialize_model_groups(self) -> Dict[str, list]:
        # Include both evaluated and self-reported models
        available_models = set(self.KEYWORD_DATA.keys()) | set(self.SELF_REPORTED.keys())

        filtered_groups = {}
        for group_name, models in BASE_MODEL_GROUPS.items():
            if group_name == "All":
                filtered_groups[group_name] = sorted(list(available_models))
            else:
                filtered_models = [model for model in models if model in available_models]
                if filtered_models:
                    filtered_groups[group_name] = filtered_models

        return filtered_groups

    def get_df(self, selected_super_group: str, selected_model_group: str) -> pd.DataFrame:
        original_dimension = get_original_dimension(selected_super_group)
        data = []

        for model in self.MODEL_GROUPS[selected_model_group]:
            if (model not in self.KEYWORD_DATA or model not in self.SUMMARY_DATA) and model not in self.SELF_REPORTED:
                continue
            
            # Basic model information
            row = {
                "Models": get_display_model_name(model, as_link=True),
            }
            
            # Add asterisk for self-reported results
            if model in self.SELF_REPORTED:
                # Store numeric value for sorting but display with asterisk
                row["Overall"] = self.SELF_REPORTED[model]
                row["Overall_display"] = f"{self.SELF_REPORTED[model]:.2f}*"
                row["Core"] = None
                row["Open-ended"] = None
                for display_name in self.SUPER_GROUPS[selected_super_group]:
                    row[display_name] = None
            else:
                model_data = self.KEYWORD_DATA[model]
                summary = self.SUMMARY_DATA[model]
                
                # Store numeric values
                overall_score = round(summary["overall_score"] * 100, 2)
                row["Overall"] = overall_score
                row["Overall_display"] = f"{overall_score:.2f}"
                row["Core"] = round(summary["core"]["macro_mean_score"] * 100, 2)
                row["Open-ended"] = round(summary["open"]["macro_mean_score"] * 100, 2)
                
                # Add dimension-specific scores
                if original_dimension in model_data:
                    for display_name in self.SUPER_GROUPS[selected_super_group]:
                        original_keyword = self.keyword_display_map[display_name]
                        if original_keyword in model_data[original_dimension]:
                            row[display_name] = round(
                                model_data[original_dimension][original_keyword]["average_score"] * 100, 2
                            )
                        else:
                            row[display_name] = None
                else:
                    for display_name in self.SUPER_GROUPS[selected_super_group]:
                        row[display_name] = None

            data.append(row)

        df = pd.DataFrame(data)
        # Sort by numeric Overall column
        df = df.sort_values(by="Overall", ascending=False)
        
        # Replace None with "-" for display
        display_cols = ["Core", "Open-ended"] + self.SUPER_GROUPS[selected_super_group]
        df[display_cols] = df[display_cols].fillna("-")
        
        # Replace Overall with Overall_display
        df["Overall"] = df["Overall_display"]
        df = df.drop("Overall_display", axis=1)
        
        return df

    def get_leaderboard_data(self, selected_super_group: str, selected_model_group: str) -> Tuple[list, list]:
        df = self.get_df(selected_super_group, selected_model_group)

        # Get total task counts from the first model's data
        sample_model = "GPT_4o"
        total_core_tasks = self.SUMMARY_DATA[sample_model]["core"]["num_eval_tasks"]
        total_open_tasks = self.SUMMARY_DATA[sample_model]["open"]["num_eval_tasks"]
        total_tasks = total_core_tasks + total_open_tasks

        # Define headers with task counts on new line using Unicode line break
        column_headers = {
            "Rank": "Rank",
            "Models": "Models",
            "Overall": f"Overall\n({total_tasks})",
            "Core": f"Core\n({total_core_tasks})",
            "Open-ended": f"Open-ended\n({total_open_tasks})",
        }

        # Add rank column to DataFrame
        df = df.reset_index(drop=True)
        df.insert(0, "Rank", range(1, len(df) + 1))

        # Rename the columns in DataFrame to match headers
        df = df.rename(columns=column_headers)

        # For dimension columns, add task counts on new line
        dimension_headers = []
        for display_name in self.SUPER_GROUPS[selected_super_group]:
            task_count = display_name.split("(")[1].rstrip(")")
            base_name = display_name.split("(")[0]
            dimension_headers.append(f"{base_name}\n({task_count})")

        headers = [
            column_headers["Rank"],
            column_headers["Models"],
            column_headers["Overall"],
            column_headers["Core"],
            column_headers["Open-ended"],
        ] + dimension_headers

        data = df[
            [
                column_headers["Rank"],
                column_headers["Models"],
                column_headers["Overall"],
                column_headers["Core"],
                column_headers["Open-ended"],
            ]
            + self.SUPER_GROUPS[selected_super_group]
        ].values.tolist()

        return headers, data


# Keep your helper functions
def get_original_dimension(mapped_dimension):
    return next(k for k, v in DIMENSION_NAME_MAP.items() if v == mapped_dimension)


def get_original_keyword(mapped_keyword):
    return next((k for k, v in KEYWORD_NAME_MAP.items() if v == mapped_keyword), mapped_keyword)


def get_display_model_name(model_name: str, as_link: bool = True) -> str:
    display_name = MODEL_NAME_MAP.get(model_name, model_name)
    if as_link and model_name in MODEL_URLS:
        return f'<a href="{MODEL_URLS[model_name]}" target="_blank" style="text-decoration: none; color: #2196F3;">{display_name}</a>'
    return display_name