File size: 9,652 Bytes
8553d06 eeb88fb 2a2ba62 bc925b6 4301eca 8b2c873 bc925b6 eeb88fb 8b2c873 bc925b6 8b2c873 bc925b6 eeb88fb 8c04f42 8b2c873 bc925b6 8c04f42 bc925b6 8b2c873 8c04f42 bc925b6 8b2c873 8c04f42 8b2c873 8c04f42 bc925b6 8c04f42 bc925b6 8c04f42 bc925b6 8c04f42 eeb88fb bc925b6 eeb88fb 6a59158 eeb88fb 6a59158 eeb88fb bc925b6 eeb88fb bc925b6 eeb88fb bc925b6 2a2ba62 eeb88fb 4301eca eeb88fb 2a2ba62 bc925b6 2a2ba62 8c04f42 bc925b6 2a2ba62 bc925b6 eeb88fb bc925b6 eeb88fb bc925b6 eeb88fb bc925b6 eeb88fb bc925b6 4301eca 8b2c873 2a2ba62 4301eca 8b2c873 1f300cb 4301eca 09497a7 4301eca 1f300cb bc925b6 4301eca bc925b6 09497a7 bc925b6 4301eca bc925b6 1f300cb bc925b6 1f300cb bc925b6 4301eca 09497a7 4301eca 2a2ba62 bc925b6 1f300cb bc925b6 eeb88fb 8553d06 bc925b6 8553d06 bc925b6 4301eca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import pandas as pd
import json
from typing import Dict, Any, Tuple
import os
from constants import MODEL_NAME_MAP, DIMENSION_NAME_MAP, KEYWORD_NAME_MAP, MODEL_URLS, BASE_MODEL_GROUPS
class MEGABenchEvalDataLoader:
def __init__(self, base_path):
self.base_path = base_path
# Load both model and summary data at once
self.KEYWORD_DATA, self.SUMMARY_DATA = self._load_data()
# Add loading of self-reported results
self.SELF_REPORTED = self._load_self_reported()
self.SUPER_GROUPS = self._initialize_super_groups()
self.MODEL_GROUPS = self._initialize_model_groups()
def _get_base_path(self) -> str:
raise NotImplementedError("Subclasses must implement _get_base_path")
def _load_data(self) -> Tuple[Dict[str, Any], Dict[str, Any]]:
summary_data = {}
keyword_data = {}
model_folders = [f for f in os.listdir(self.base_path) if os.path.isdir(os.path.join(self.base_path, f))]
for model_name in model_folders:
model_path = f"{self.base_path}/{model_name}/summary_and_keyword_stats.json"
with open(model_path, "r") as f:
data = json.load(f)
if "keyword_stats" in data:
keyword_data[model_name] = data["keyword_stats"]
if "model_summary" in data:
summary_data[model_name] = data["model_summary"]
return keyword_data, summary_data
def _load_self_reported(self) -> Dict[str, float]:
try:
with open(os.path.join(self.base_path, "self_reported.json"), "r") as f:
return json.load(f)
except FileNotFoundError:
print(
"Warning: No self-reported file found at",
os.path.join(os.path.dirname(self.base_path), "self_reported.json"),
)
return {}
def _initialize_super_groups(self):
# Get a sample model to access the structure
sample_model = next(iter(self.KEYWORD_DATA))
# Create groups with task counts
groups = {}
self.keyword_display_map = {} # Add this map to store display-to-original mapping
for dim in self.KEYWORD_DATA[sample_model]:
dim_name = DIMENSION_NAME_MAP[dim]
# Create a list of tuples (display_name, count, keyword) for sorting
keyword_info = []
for keyword in self.KEYWORD_DATA[sample_model][dim]:
# Get the task count for this keyword
task_count = self.KEYWORD_DATA[sample_model][dim][keyword]["count"]
original_name = KEYWORD_NAME_MAP.get(keyword, keyword)
display_name = f"{original_name}({task_count})"
keyword_info.append((display_name, task_count, keyword))
# Sort by count (descending) and then by display name (for ties)
keyword_info.sort(key=lambda x: (-x[1], x[0]))
# Store sorted display names and update mapping
groups[dim_name] = [info[0] for info in keyword_info]
for display_name, _, keyword in keyword_info:
self.keyword_display_map[display_name] = keyword
# Sort based on predefined order
order = ["Application", "Skills", "Output Format", "Input Format", "Visual Input Number"]
return {k: groups[k] for k in order if k in groups}
def _initialize_model_groups(self) -> Dict[str, list]:
# Include both evaluated and self-reported models
available_models = set(self.KEYWORD_DATA.keys()) | set(self.SELF_REPORTED.keys())
filtered_groups = {}
for group_name, models in BASE_MODEL_GROUPS.items():
if group_name == "All":
filtered_groups[group_name] = sorted(list(available_models))
else:
filtered_models = [model for model in models if model in available_models]
if filtered_models:
filtered_groups[group_name] = filtered_models
return filtered_groups
def get_df(self, selected_super_group: str, selected_model_group: str) -> pd.DataFrame:
original_dimension = get_original_dimension(selected_super_group)
data = []
for model in self.MODEL_GROUPS[selected_model_group]:
if (model not in self.KEYWORD_DATA or model not in self.SUMMARY_DATA) and model not in self.SELF_REPORTED:
continue
# Basic model information
row = {
"Models": get_display_model_name(model, as_link=True),
}
# Add asterisk for self-reported results
if model in self.SELF_REPORTED:
# Store numeric value for sorting but display with asterisk
row["Overall"] = self.SELF_REPORTED[model]
row["Overall_display"] = f"{self.SELF_REPORTED[model]:.2f}*"
row["Core"] = None
row["Open-ended"] = None
for display_name in self.SUPER_GROUPS[selected_super_group]:
row[display_name] = None
else:
model_data = self.KEYWORD_DATA[model]
summary = self.SUMMARY_DATA[model]
# Store numeric values
overall_score = round(summary["overall_score"] * 100, 2)
row["Overall"] = overall_score
row["Overall_display"] = f"{overall_score:.2f}"
row["Core"] = round(summary["core"]["macro_mean_score"] * 100, 2)
row["Open-ended"] = round(summary["open"]["macro_mean_score"] * 100, 2)
# Add dimension-specific scores
if original_dimension in model_data:
for display_name in self.SUPER_GROUPS[selected_super_group]:
original_keyword = self.keyword_display_map[display_name]
if original_keyword in model_data[original_dimension]:
row[display_name] = round(
model_data[original_dimension][original_keyword]["average_score"] * 100, 2
)
else:
row[display_name] = None
else:
for display_name in self.SUPER_GROUPS[selected_super_group]:
row[display_name] = None
data.append(row)
df = pd.DataFrame(data)
# Sort by numeric Overall column
df = df.sort_values(by="Overall", ascending=False)
# Replace None with "-" for display
display_cols = ["Core", "Open-ended"] + self.SUPER_GROUPS[selected_super_group]
df[display_cols] = df[display_cols].fillna("-")
# Replace Overall with Overall_display
df["Overall"] = df["Overall_display"]
df = df.drop("Overall_display", axis=1)
return df
def get_leaderboard_data(self, selected_super_group: str, selected_model_group: str) -> Tuple[list, list]:
df = self.get_df(selected_super_group, selected_model_group)
# Get total task counts from the first model's data
sample_model = "GPT_4o"
total_core_tasks = self.SUMMARY_DATA[sample_model]["core"]["num_eval_tasks"]
total_open_tasks = self.SUMMARY_DATA[sample_model]["open"]["num_eval_tasks"]
total_tasks = total_core_tasks + total_open_tasks
# Define headers with task counts on new line using Unicode line break
column_headers = {
"Rank": "Rank",
"Models": "Models",
"Overall": f"Overall\n({total_tasks})",
"Core": f"Core\n({total_core_tasks})",
"Open-ended": f"Open-ended\n({total_open_tasks})",
}
# Add rank column to DataFrame
df = df.reset_index(drop=True)
df.insert(0, "Rank", range(1, len(df) + 1))
# Rename the columns in DataFrame to match headers
df = df.rename(columns=column_headers)
# For dimension columns, add task counts on new line
dimension_headers = []
for display_name in self.SUPER_GROUPS[selected_super_group]:
task_count = display_name.split("(")[1].rstrip(")")
base_name = display_name.split("(")[0]
dimension_headers.append(f"{base_name}\n({task_count})")
headers = [
column_headers["Rank"],
column_headers["Models"],
column_headers["Overall"],
column_headers["Core"],
column_headers["Open-ended"],
] + dimension_headers
data = df[
[
column_headers["Rank"],
column_headers["Models"],
column_headers["Overall"],
column_headers["Core"],
column_headers["Open-ended"],
]
+ self.SUPER_GROUPS[selected_super_group]
].values.tolist()
return headers, data
# Keep your helper functions
def get_original_dimension(mapped_dimension):
return next(k for k, v in DIMENSION_NAME_MAP.items() if v == mapped_dimension)
def get_original_keyword(mapped_keyword):
return next((k for k, v in KEYWORD_NAME_MAP.items() if v == mapped_keyword), mapped_keyword)
def get_display_model_name(model_name: str, as_link: bool = True) -> str:
display_name = MODEL_NAME_MAP.get(model_name, model_name)
if as_link and model_name in MODEL_URLS:
return f'<a href="{MODEL_URLS[model_name]}" target="_blank" style="text-decoration: none; color: #2196F3;">{display_name}</a>'
return display_name
|