Spaces:
Running
on
Zero
Running
on
Zero
Disable local models
Browse files
app.py
CHANGED
@@ -4,10 +4,9 @@ import gradio as gr
|
|
4 |
from dotenv import load_dotenv
|
5 |
from httpx import Client
|
6 |
from huggingface_hub import HfApi
|
7 |
-
from
|
8 |
-
from llama_cpp import Llama
|
9 |
import pandas as pd
|
10 |
-
from transformers import pipeline
|
11 |
|
12 |
load_dotenv()
|
13 |
|
@@ -23,19 +22,22 @@ headers = {
|
|
23 |
"Content-Type": "application/json"
|
24 |
}
|
25 |
|
26 |
-
logger = logging.get_logger(__name__)
|
27 |
client = Client(headers=headers)
|
28 |
api = HfApi(token=HF_TOKEN)
|
29 |
|
30 |
-
|
31 |
-
""
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
|
40 |
def get_first_parquet(dataset: str):
|
41 |
resp = client.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset}")
|
@@ -51,17 +53,6 @@ def query_remote_model(text):
|
|
51 |
pred = response.json()
|
52 |
return pred[0]["generated_text"]
|
53 |
|
54 |
-
def query_local_model_transformers(text):
|
55 |
-
pred = pipe(text, max_length=1000)
|
56 |
-
print(type(pred))
|
57 |
-
print(pred)
|
58 |
-
return pred[0]["generated_text"]
|
59 |
-
|
60 |
-
|
61 |
-
def query_local_model(text):
|
62 |
-
pred = llama(text, temperature=0.1, max_tokens=500)
|
63 |
-
return pred["choices"][0]["text"]
|
64 |
-
|
65 |
|
66 |
def text2sql(dataset_name, query_input):
|
67 |
print(f"start text2sql for {dataset_name}")
|
@@ -73,10 +64,9 @@ def text2sql(dataset_name, query_input):
|
|
73 |
print(first_parquet_url)
|
74 |
con = duckdb.connect()
|
75 |
con.execute("INSTALL 'httpfs'; LOAD httpfs;")
|
76 |
-
# could get from
|
77 |
con.execute(f"CREATE TABLE data as SELECT * FROM '{first_parquet_url}' LIMIT 1;")
|
78 |
result = con.sql("SELECT sql FROM duckdb_tables() where table_name ='data';").df()
|
79 |
-
|
80 |
ddl_create = result.iloc[0,0]
|
81 |
|
82 |
text = f"""### Instruction:
|
@@ -92,12 +82,8 @@ def text2sql(dataset_name, query_input):
|
|
92 |
### Response (use duckdb shorthand if possible) replace table name with {first_parquet_url} in the generated sql query:
|
93 |
"""
|
94 |
|
95 |
-
print(text)
|
96 |
-
|
97 |
sql_output = query_remote_model(text)
|
98 |
|
99 |
-
# sql_output = query_local_model_transformers(text)
|
100 |
-
|
101 |
try:
|
102 |
query_result = con.sql(sql_output).df()
|
103 |
except Exception as error:
|
@@ -111,9 +97,9 @@ def text2sql(dataset_name, query_input):
|
|
111 |
|
112 |
|
113 |
with gr.Blocks() as demo:
|
114 |
-
gr.Markdown("#
|
115 |
-
gr.Markdown("This space
|
116 |
-
gr.Markdown("
|
117 |
dataset_name = gr.Textbox("sksayril/medicine-info", label="Dataset Name")
|
118 |
query_input = gr.Textbox("How many rows there are?", label="Ask something about your data")
|
119 |
btn = gr.Button("Generate SQL")
|
|
|
4 |
from dotenv import load_dotenv
|
5 |
from httpx import Client
|
6 |
from huggingface_hub import HfApi
|
7 |
+
#from llama_cpp import Llama
|
|
|
8 |
import pandas as pd
|
9 |
+
#from transformers import pipeline
|
10 |
|
11 |
load_dotenv()
|
12 |
|
|
|
22 |
"Content-Type": "application/json"
|
23 |
}
|
24 |
|
|
|
25 |
client = Client(headers=headers)
|
26 |
api = HfApi(token=HF_TOKEN)
|
27 |
|
28 |
+
# First approach: Use llama.cpp
|
29 |
+
#llama = Llama(model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", n_ctx=2048)
|
30 |
+
#def query_local_model(text):
|
31 |
+
# pred = llama(text, temperature=0.1, max_tokens=500)
|
32 |
+
# return pred["choices"][0]["text"]
|
33 |
+
|
34 |
+
|
35 |
+
# Second approach: Use transformers -> Took too much time
|
36 |
+
#pipe = pipeline("text-generation", model="motherduckdb/DuckDB-NSQL-7B-v0.1")
|
37 |
+
#def query_local_model_transformers(text):
|
38 |
+
# pred = pipe(text, max_length=1000)
|
39 |
+
# return pred[0]["generated_text"]
|
40 |
+
|
41 |
|
42 |
def get_first_parquet(dataset: str):
|
43 |
resp = client.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset}")
|
|
|
53 |
pred = response.json()
|
54 |
return pred[0]["generated_text"]
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def text2sql(dataset_name, query_input):
|
58 |
print(f"start text2sql for {dataset_name}")
|
|
|
64 |
print(first_parquet_url)
|
65 |
con = duckdb.connect()
|
66 |
con.execute("INSTALL 'httpfs'; LOAD httpfs;")
|
67 |
+
# could get from Parquet instead?
|
68 |
con.execute(f"CREATE TABLE data as SELECT * FROM '{first_parquet_url}' LIMIT 1;")
|
69 |
result = con.sql("SELECT sql FROM duckdb_tables() where table_name ='data';").df()
|
|
|
70 |
ddl_create = result.iloc[0,0]
|
71 |
|
72 |
text = f"""### Instruction:
|
|
|
82 |
### Response (use duckdb shorthand if possible) replace table name with {first_parquet_url} in the generated sql query:
|
83 |
"""
|
84 |
|
|
|
|
|
85 |
sql_output = query_remote_model(text)
|
86 |
|
|
|
|
|
87 |
try:
|
88 |
query_result = con.sql(sql_output).df()
|
89 |
except Exception as error:
|
|
|
97 |
|
98 |
|
99 |
with gr.Blocks() as demo:
|
100 |
+
gr.Markdown("# Generate SQL queries based on a given text for your dataset")
|
101 |
+
gr.Markdown("This space showcase how to generate a SQL query from a text and get the result.")
|
102 |
+
gr.Markdown("Tech stack: duckdb and DuckDB-NSQL-7B model")
|
103 |
dataset_name = gr.Textbox("sksayril/medicine-info", label="Dataset Name")
|
104 |
query_input = gr.Textbox("How many rows there are?", label="Ask something about your data")
|
105 |
btn = gr.Button("Generate SQL")
|