ariG23498 HF staff commited on
Commit
33a2adb
·
verified ·
1 Parent(s): b455d78

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -2
app.py CHANGED
@@ -1,13 +1,40 @@
1
  import gradio as gr
2
  from transformers import pipeline
3
 
 
4
  pipe = pipeline(
5
  "image-classification",
6
  model="ariG23498/vit_base_patch16_224.augreg2_in21k_ft_in1k.ft_food101"
7
  )
8
 
 
9
  def classify(image):
10
  return pipe(image)[0]["label"]
11
 
12
- demo = gr.Interface(fn=classify, inputs=gr.Image(type="pil"), outputs="text", examples=[["./sushi.png", "sushi"]])
13
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
+ # Initialize the pipeline
5
  pipe = pipeline(
6
  "image-classification",
7
  model="ariG23498/vit_base_patch16_224.augreg2_in21k_ft_in1k.ft_food101"
8
  )
9
 
10
+ # Function for classification
11
  def classify(image):
12
  return pipe(image)[0]["label"]
13
 
14
+ # Gradio Interface with a detailed description
15
+ demo = gr.Interface(
16
+ fn=classify,
17
+ inputs=gr.Image(type="pil", label="Upload an Image"),
18
+ outputs=gr.Textbox(label="Predicted Label"),
19
+ examples=[["./sushi.png", "sushi"]],
20
+ title="Food Classification with ViT 🥗🍣",
21
+ description=(
22
+ "### Explore Food Classification with Vision Transformers (ViT) 🔍\n\n"
23
+ "This application demonstrates the power of Vision Transformers (ViT) for food classification tasks, "
24
+ "leveraging the pre-trained model `vit_base_patch16_224.augreg2_in21k_ft_in1k.ft_food101` fine-tuned on the Food-101 dataset. "
25
+ "With just a few lines of code, you can integrate state-of-the-art image classification models using the Hugging Face `pipeline` API.\n\n"
26
+ "#### How to Use:\n"
27
+ "1. Upload an image of food (e.g., sushi, pizza, or burgers).\n"
28
+ "2. The model will classify the image and provide the predicted label.\n"
29
+ "3. Try the provided example for a quick start or test your own food images!\n\n"
30
+ "#### About the Model:\n"
31
+ "- **Model Name**: `vit_base_patch16_224.augreg2_in21k_ft_in1k.ft_food101`\n"
32
+ "- **Dataset**: [Food-101](https://www.kaggle.com/dansbecker/food-101)\n"
33
+ "- **Architecture**: Vision Transformers (ViT), which process images by splitting them into patches and leveraging self-attention for feature extraction.\n\n"
34
+ "#### Learn More:\n"
35
+ "Discover more about Vision Transformers in the [Hugging Face blog](https://huggingface.co/blog). "
36
+ "Explore the Food-101 dataset [here](https://www.kaggle.com/dansbecker/food-101)."
37
+ )
38
+ )
39
+
40
+ demo.launch()