Spaces:
Sleeping
Sleeping
import torch, torchvision | |
from torchvision import transforms | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
import os | |
import lightning as L | |
import torchmetrics | |
from pytorch_grad_cam import GradCAM | |
from pytorch_grad_cam.utils.image import show_cam_on_image | |
from model import LightningModel | |
pytorch_model = torch.hub.load('pytorch/vision', 'resnet18', weights=None) | |
pytorch_model.fc = torch.nn.Linear(512, 10) | |
model_pth = './epoch=22-step=16169.ckpt' | |
lightning_model = LightningModel.load_from_checkpoint(checkpoint_path=model_pth, model=pytorch_model, map_location=torch.device("cpu")) | |
inv_normalize = transforms.Normalize( | |
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23], | |
std=[1/0.23, 1/0.23, 1/0.23] | |
) | |
classes = ('plane', 'car', 'bird', 'cat', 'deer', | |
'dog', 'frog', 'horse', 'ship', 'truck') | |
def inference(input_img, transparency = 0.5, target_layer_number = -1): | |
transform = transforms.ToTensor() | |
org_img = input_img | |
input_img = transform(input_img) | |
input_img = input_img | |
input_img = input_img.unsqueeze(0) | |
lightning_model.eval() | |
with torch.no_grad(): | |
outputs = lightning_model(input_img) | |
print(f'outputs, {outputs.shape}') | |
softmax = torch.nn.Softmax(dim=0) | |
print() | |
o = softmax(outputs.flatten()) | |
confidences = {classes[i]: float(o[i]) for i in range(10)} | |
_, prediction = torch.max(outputs, 1) | |
target_layers = [pytorch_model.layer2[target_layer_number]] | |
cam = GradCAM(model=lightning_model, target_layers=target_layers) | |
grayscale_cam = cam(input_tensor=input_img, targets=None) | |
grayscale_cam = grayscale_cam[0, :] | |
img = input_img.squeeze(0) | |
img = inv_normalize(img) | |
rgb_img = np.transpose(img, (1, 2, 0)) | |
rgb_img = rgb_img.numpy() | |
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency) | |
print(confidences) | |
return confidences, visualization | |
title = "CIFAR10 trained on ResNet18 Model with GradCAM" | |
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results" | |
example1 = './cat.jpg' | |
example2 = './dog.jpg' | |
examples = [[example1, 0.5, -1], [example2, 0.5, -1]] | |
gradio_app = gr.Interface( | |
inference, | |
inputs = [gr.Image(width=32, height=32, label="Input Image"), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value = -2, step=1, | |
label="Which Layer?")], | |
outputs = [gr.Label(num_top_classes=3), gr.Image(width=32, height=32, label="Output")], | |
title = title, | |
description = description, | |
examples = examples, | |
) | |
gradio_app.launch() |