Spaces:
Sleeping
Sleeping
mj-new
commited on
Commit
·
32fbd07
1
Parent(s):
f331a20
Working analysis of size and text/audio derived basic features
Browse files- .gitignore +3 -0
- .python-version +1 -0
- README.md +4 -4
- app.py +148 -0
- constants.py +19 -0
- playground-amu-dash.ipynb +0 -0
- requirements.txt +6 -0
- run-analysis.py +101 -0
- utils.py +601 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
plots
|
2 |
+
reports
|
3 |
+
__pycache__
|
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
streamlit
|
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
title: Amu Bigos Data Dash
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: cc-by-nc-nd-4.0
|
|
|
1 |
---
|
2 |
title: Amu Bigos Data Dash
|
3 |
+
emoji: 🐨
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.33.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: cc-by-nc-nd-4.0
|
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
|
9 |
+
from utils import read_reports, dict_to_multindex_df
|
10 |
+
#add_test_split_stats_from_secret_dataset, dict_to_multindex_df_all_splits
|
11 |
+
from utils import extract_stats_to_agg, extract_stats_all_splits, extract_stats_for_dataset_card
|
12 |
+
from constants import BIGOS_INFO, PELCRA_INFO, ABOUT_INFO
|
13 |
+
from datasets import get_dataset_config_names
|
14 |
+
|
15 |
+
# PL ASR BIGOS analysis
|
16 |
+
# PL ASR Diagnostic analysis
|
17 |
+
# PELCRA analysis
|
18 |
+
# TODO - compare the datasets
|
19 |
+
|
20 |
+
st.set_page_config(layout="wide")
|
21 |
+
|
22 |
+
about, analysis_bigos, analysis_bigos_pelcra = st.tabs(["About BIGOS datasets", "BIGOS V2 analysis", "PELCRA for BIGOS analysis"])
|
23 |
+
#analysis_bigos_diagnostic
|
24 |
+
#########################################BIGOS################################################
|
25 |
+
with about:
|
26 |
+
|
27 |
+
st.title("About BIGOS project")
|
28 |
+
st.markdown(ABOUT_INFO, unsafe_allow_html=True)
|
29 |
+
# TODO - load and display about BIGOS benchmark
|
30 |
+
|
31 |
+
with analysis_bigos:
|
32 |
+
dataset_name = "amu-cai/pl-asr-bigos-v2"
|
33 |
+
#dataset_secret = "amu-cai/pl-asr-bigos-v2-secret"
|
34 |
+
dataset_short_name = "BIGOS"
|
35 |
+
dataset_version = "V2"
|
36 |
+
|
37 |
+
dataset_configs = get_dataset_config_names(dataset_name,trust_remote_code=True)
|
38 |
+
# remove "all" subset, which is always the last config type
|
39 |
+
dataset_configs.pop()
|
40 |
+
print(dataset_configs)
|
41 |
+
# read the reports for public and secret datasets
|
42 |
+
[stats_dict_public, contents_dict_public] = read_reports(dataset_name)
|
43 |
+
|
44 |
+
# update the metrics for test split with the secret dataset statistics
|
45 |
+
#stats_dict_public = add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret)
|
46 |
+
df_multindex_for_agg = dict_to_multindex_df(stats_dict_public, all_splits=False)
|
47 |
+
df_multindex_all_splits = dict_to_multindex_df(stats_dict_public, all_splits=True)
|
48 |
+
|
49 |
+
# extract metrics from dictionary and convert to various dataframes for easier analysis and visualization
|
50 |
+
#st.header("Summary statistics")
|
51 |
+
|
52 |
+
|
53 |
+
st.header("Dataset level metrics")
|
54 |
+
metrics_size = ["samples", "audio[h]", "speakers", "words", "chars"]
|
55 |
+
df_sum_stats_agg = extract_stats_to_agg(df_multindex_for_agg, metrics_size)
|
56 |
+
|
57 |
+
# split dataframe into separate dataframes for easier analysis and visualization
|
58 |
+
st.subheader("Dataset size (audio)")
|
59 |
+
df_sum_stats_audio = df_sum_stats_agg[["audio[h]", "samples", "speakers"]]
|
60 |
+
st.dataframe(df_sum_stats_audio)
|
61 |
+
|
62 |
+
st.subheader("Dataset size (text)")
|
63 |
+
df_sum_stats_text = df_sum_stats_agg[["samples", "words", "chars"]]
|
64 |
+
st.dataframe(df_sum_stats_text)
|
65 |
+
|
66 |
+
|
67 |
+
metrics_features = ["utts_unique", "words_unique", "chars_unique", "words_per_sec", "chars_per_sec"]
|
68 |
+
|
69 |
+
df_sum_stats_all_splits = extract_stats_all_splits(df_multindex_all_splits, metrics_features)
|
70 |
+
|
71 |
+
st.subheader("Dataset features (text)")
|
72 |
+
df_sum_stats_feats_text = df_sum_stats_all_splits[metrics_features[0:2]]
|
73 |
+
st.dataframe(df_sum_stats_feats_text)
|
74 |
+
|
75 |
+
st.subheader("Dataset features (audio)")
|
76 |
+
df_sum_stats_feats_audio = df_sum_stats_all_splits[metrics_features[3:]]
|
77 |
+
st.dataframe(df_sum_stats_feats_audio)
|
78 |
+
|
79 |
+
st.header("BIGOS subsets (source datasets) cards")
|
80 |
+
for subset in dataset_configs:
|
81 |
+
st.subheader("Dataset card for: {}".format(subset))
|
82 |
+
df_metrics_subset_size = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_size, add_total=True)
|
83 |
+
st.dataframe(df_metrics_subset_size)
|
84 |
+
df_metrics_subset_features = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_features, add_total=False)
|
85 |
+
st.dataframe(df_metrics_subset_features)
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
#########################################PELCRA################################################
|
90 |
+
with analysis_bigos_pelcra:
|
91 |
+
|
92 |
+
dataset_name = "pelcra/pl-asr-pelcra-for-bigos"
|
93 |
+
#dataset_secret = "pelcra/pl-asr-pelcra-for-bigos-secret"
|
94 |
+
|
95 |
+
dataset_short_name = "PELCRA"
|
96 |
+
|
97 |
+
dataset_configs = get_dataset_config_names(dataset_name,trust_remote_code=True)
|
98 |
+
# remove "all" subset, which is always the last config type
|
99 |
+
dataset_configs.pop()
|
100 |
+
print(dataset_configs)
|
101 |
+
# read the reports for public and secret datasets
|
102 |
+
[stats_dict_public, contents_dict_public] = read_reports(dataset_name)
|
103 |
+
|
104 |
+
# update the metrics for test split with the secret dataset statistics
|
105 |
+
#stats_dict_public = add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret)
|
106 |
+
df_multindex_for_agg = dict_to_multindex_df(stats_dict_public, all_splits=False)
|
107 |
+
df_multindex_all_splits = dict_to_multindex_df(stats_dict_public, all_splits=True)
|
108 |
+
|
109 |
+
# extract metrics from dictionary and convert to various dataframes for easier analysis and visualization
|
110 |
+
#st.header("Summary statistics")
|
111 |
+
|
112 |
+
|
113 |
+
st.header("Dataset level metrics")
|
114 |
+
metrics_size = ["samples", "audio[h]", "speakers", "words", "chars"]
|
115 |
+
df_sum_stats_agg = extract_stats_to_agg(df_multindex_for_agg, metrics_size)
|
116 |
+
|
117 |
+
#st.dataframe(df_sum_stats_agg)
|
118 |
+
#print(df_sum_stats.columns)
|
119 |
+
|
120 |
+
# split dataframe into separate dataframes for easier analysis and visualization
|
121 |
+
st.subheader("Dataset size (audio)")
|
122 |
+
df_sum_stats_audio = df_sum_stats_agg[["audio[h]", "samples", "speakers"]]
|
123 |
+
st.dataframe(df_sum_stats_audio)
|
124 |
+
|
125 |
+
st.subheader("Dataset size (text)")
|
126 |
+
df_sum_stats_text = df_sum_stats_agg[["samples", "words", "chars"]]
|
127 |
+
st.dataframe(df_sum_stats_text)
|
128 |
+
|
129 |
+
|
130 |
+
metrics_features = ["utts_unique", "words_unique", "chars_unique", "words_per_sec", "chars_per_sec"]
|
131 |
+
|
132 |
+
df_sum_stats_all_splits = extract_stats_all_splits(df_multindex_all_splits, metrics_features)
|
133 |
+
|
134 |
+
st.subheader("Dataset features (text)")
|
135 |
+
df_sum_stats_feats_text = df_sum_stats_all_splits[metrics_features[0:2]]
|
136 |
+
st.dataframe(df_sum_stats_feats_text)
|
137 |
+
|
138 |
+
st.subheader("Dataset features (audio)")
|
139 |
+
df_sum_stats_feats_audio = df_sum_stats_all_splits[metrics_features[3:]]
|
140 |
+
st.dataframe(df_sum_stats_feats_audio)
|
141 |
+
|
142 |
+
st.header("BIGOS subsets (source datasets) cards")
|
143 |
+
for subset in dataset_configs:
|
144 |
+
st.subheader("Dataset card for: {}".format(subset))
|
145 |
+
df_metrics_subset_size = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_size, add_total=True)
|
146 |
+
st.dataframe(df_metrics_subset_size)
|
147 |
+
df_metrics_subset_features = extract_stats_for_dataset_card(df_multindex_for_agg, subset, metrics_features, add_total=False)
|
148 |
+
st.dataframe(df_metrics_subset_features)
|
constants.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ABOUT_INFO = "Welcome to the BIGOS (Benchmark Intended Grouping of Open Speech) dataset analysis dashboard! <br> \
|
2 |
+
Here you can learn more about the contents of BIGOS speech datasets for Polish: <br> \
|
3 |
+
* **BIGOS V2 dataset** [HF datasets hub](https://huggingface.co/datasets/amu-cai/pl-asr-bigos-v2) <br> \
|
4 |
+
* **BIGOS V2 diagnostic dataset** [HF datasets hub](https://huggingface.co/datasets/amu-cai/pl-asr-bigos-v2-diagnostic) <br> \
|
5 |
+
* **PELCRA for BIGOS dataset** [HF datasets hub](https://huggingface.co/datasets/pelcra/pl-asr-pelcra-for-bigos) <br> \
|
6 |
+
Please visit respective tab to learn more about the contents of specific dataset. <br><br> \
|
7 |
+
Survey of Polish ASR speech datasets and benchmarks is available here: [Polish ASR survey](https://huggingface.co/spaces/amu-cai/pl-asr-survey) <br><br>\
|
8 |
+
The latest and most comprehensive ASR benchmarks for Polish is available here: [BIGOS/PELCRA ASR leaderboard](https://huggingface.co/spaces/amu-cai/pl-asr-bigos-bench-dash). <br><br> \
|
9 |
+
You can also contact the author via [email](mailto:[email protected]) or [LinkedIn](https://www.linkedin.com/in/michaljunczyk/).<br>"
|
10 |
+
|
11 |
+
BIGOS_INFO = "TODO"
|
12 |
+
PELCRA_INFO = "TODO"
|
13 |
+
|
14 |
+
CITATION_MAIN = "@misc{junczyk-2024-pl-asr-bigos-dataset-analysis <br> \
|
15 |
+
title = {Analysis of BIGOS Dataset for Polish ASR evaluation.}, <br> \
|
16 |
+
author = {Michał Junczyk}, <br> \
|
17 |
+
year = {2024}, <br> \
|
18 |
+
publisher = {Hugging Face}, <br> \
|
19 |
+
url = {https://huggingface.co/spaces/amu-cai/amu-bigos-data-dash} }"
|
playground-amu-dash.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets
|
2 |
+
pandas
|
3 |
+
streamlit
|
4 |
+
seaborn
|
5 |
+
matplotlib
|
6 |
+
librosa
|
run-analysis.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from datasets import load_dataset, get_dataset_config_names, Features, Value
|
4 |
+
from utils import num_of_samples_per_split, uniq_utts_per_split, words_per_split, uniq_words_per_split, chars_per_split, uniq_chars_per_split
|
5 |
+
from utils import audio_duration_per_split, speakers_per_split, meta_cov_per_split
|
6 |
+
#, uniq_utts_per_speaker
|
7 |
+
from utils import meta_distribution_text, meta_distribution_violin_plot, recordings_per_speaker, speech_rate_words_per_split, speech_rate_chars_per_split
|
8 |
+
import argparse
|
9 |
+
# move to constants
|
10 |
+
output_dir_plots = "./plots"
|
11 |
+
output_dir_reports = "./reports"
|
12 |
+
os.makedirs(output_dir_plots, exist_ok=True)
|
13 |
+
os.makedirs(output_dir_plots, exist_ok=True)
|
14 |
+
|
15 |
+
# get as cmd line args
|
16 |
+
# read from command line argument
|
17 |
+
parser = argparse.ArgumentParser()
|
18 |
+
parser.add_argument("--dataset", type=str, required=True, help="Name of the dataset to generate reports for")
|
19 |
+
parser.add_argument("--secret_test_split", default=True, type=bool, help="Should references for test split be retrieved from the secret distribution?")
|
20 |
+
|
21 |
+
args = parser.parse_args()
|
22 |
+
|
23 |
+
dataset_name = args.dataset
|
24 |
+
print("Generating reports for dataset: {}".format(dataset_name))
|
25 |
+
if (args.secret_test_split):
|
26 |
+
dataset_name_secret = str.join("-", [dataset_name, "secret"])
|
27 |
+
# check if secret repo exists
|
28 |
+
print(dataset_name_secret)
|
29 |
+
try:
|
30 |
+
dataset_configs_secret = get_dataset_config_names(dataset_name_secret)
|
31 |
+
except:
|
32 |
+
print("Config for secret dataset {} cannot be retrieved!".format(dataset_name_secret))
|
33 |
+
|
34 |
+
#dataset_name = "amu-cai/pl-asr-bigos-v2"
|
35 |
+
output_dir_reports_dataset = os.path.join(output_dir_reports, dataset_name)
|
36 |
+
os.makedirs(output_dir_reports_dataset, exist_ok=True)
|
37 |
+
|
38 |
+
# get dataset config names
|
39 |
+
dataset_configs = get_dataset_config_names(dataset_name)
|
40 |
+
|
41 |
+
# initialize output structures
|
42 |
+
dataset_statistics = {}
|
43 |
+
output_fn_stats = os.path.join(output_dir_reports_dataset, "dataset_statistics.json")
|
44 |
+
|
45 |
+
dataset_contents = {}
|
46 |
+
output_fn_contents = os.path.join(output_dir_reports_dataset, "dataset_contents.json")
|
47 |
+
|
48 |
+
# specify features to load. Skip loading of audio data
|
49 |
+
features_to_load = Features({'audioname': Value(dtype='string', id=None), 'split': Value(dtype='string', id=None), 'dataset': Value(dtype='string', id=None), 'speaker_id': Value(dtype='string', id=None), 'ref_orig': Value(dtype='string', id=None), 'audio_duration_samples': Value(dtype='int32', id=None), 'audio_duration_seconds': Value(dtype='float32', id=None), 'samplingrate_orig': Value(dtype='int32', id=None), 'sampling_rate': Value(dtype='int32', id=None), 'audiopath_bigos': Value(dtype='string', id=None), 'audiopath_local': Value(dtype='string', id=None), 'speaker_age': Value(dtype='string', id=None), 'speaker_sex': Value(dtype='string', id=None)})
|
50 |
+
|
51 |
+
for config_name in dataset_configs:
|
52 |
+
print("Generating stats for {}".format(config_name))
|
53 |
+
|
54 |
+
dataset_statistics[config_name] = {}
|
55 |
+
dataset_contents[config_name] = {}
|
56 |
+
|
57 |
+
dataset_hf_subset = load_dataset(dataset_name, config_name, features=features_to_load, trust_remote_code=True)
|
58 |
+
if(args.secret_test_split):
|
59 |
+
dataset_hf_subset_secret = load_dataset(dataset_name_secret, config_name, features=features_to_load, trust_remote_code=True)
|
60 |
+
|
61 |
+
dataset_statistics[config_name]["samples"] = num_of_samples_per_split(dataset_hf_subset)
|
62 |
+
dataset_statistics[config_name]["audio[h]"] = audio_duration_per_split(dataset_hf_subset)
|
63 |
+
dataset_statistics[config_name]["speakers"] = speakers_per_split(dataset_hf_subset)
|
64 |
+
|
65 |
+
# metrics based on transcriptions (references) - requires reading secret repo for test split
|
66 |
+
dataset_statistics[config_name]["utts_unique"], dataset_contents[config_name]["unique_utts"] = uniq_utts_per_split(dataset_hf_subset, dataset_hf_subset_secret)
|
67 |
+
dataset_statistics[config_name]["words"] = words_per_split(dataset_hf_subset, dataset_hf_subset_secret)
|
68 |
+
dataset_statistics[config_name]["words_unique"], dataset_contents[config_name]["unique_words"] = uniq_words_per_split(dataset_hf_subset, dataset_hf_subset_secret)
|
69 |
+
dataset_statistics[config_name]["chars"] = chars_per_split(dataset_hf_subset, dataset_hf_subset_secret)
|
70 |
+
dataset_statistics[config_name]["chars_unique"], dataset_contents[config_name]["unique_chars"] = uniq_chars_per_split(dataset_hf_subset, dataset_hf_subset_secret)
|
71 |
+
dataset_statistics[config_name]["words_per_sec"] = speech_rate_words_per_split(dataset_hf_subset, dataset_hf_subset_secret)
|
72 |
+
dataset_statistics[config_name]["chars_per_sec"] = speech_rate_chars_per_split(dataset_hf_subset, dataset_hf_subset_secret)
|
73 |
+
|
74 |
+
# metadata coverage per subset in percent - speaker accent
|
75 |
+
dataset_statistics[config_name]["meta_cov_sex"] = meta_cov_per_split(dataset_hf_subset, 'speaker_sex')
|
76 |
+
dataset_statistics[config_name]["meta_cov_age"] = meta_cov_per_split(dataset_hf_subset, 'speaker_age')
|
77 |
+
|
78 |
+
# speech rate per subset
|
79 |
+
dataset_statistics[config_name]["meta_dist_sex"] = meta_distribution_text(dataset_hf_subset, 'speaker_sex')
|
80 |
+
dataset_statistics[config_name]["meta_dist_age"] = meta_distribution_text(dataset_hf_subset, 'speaker_age')
|
81 |
+
|
82 |
+
dataset_statistics[config_name]["samples_per_spk"], dataset_contents[config_name]["samples_per_spk"] = recordings_per_speaker(dataset_hf_subset)
|
83 |
+
# dataset_statistics[config_name] = uniq_utts_per_speaker(dataset_hf_subset)
|
84 |
+
# number of words per speaker (min, max, med, avg, std)
|
85 |
+
|
86 |
+
# distribution of audio duration per subset
|
87 |
+
output_dir_plots_subset = os.path.join(output_dir_plots, config_name)
|
88 |
+
meta_distribution_violin_plot(dataset_hf_subset, output_dir_plots_subset, 'audio_duration_seconds', 'speaker_sex')
|
89 |
+
|
90 |
+
# distribution of audio duration per age
|
91 |
+
meta_distribution_violin_plot(dataset_hf_subset, output_dir_plots_subset, 'audio_duration_seconds', 'speaker_age')
|
92 |
+
|
93 |
+
|
94 |
+
# save datasets statistics dict to storage as JSON file
|
95 |
+
with open(output_fn_stats, 'w') as f:
|
96 |
+
json.dump(dataset_statistics, f)
|
97 |
+
|
98 |
+
# save dataset content analysis to storage
|
99 |
+
with open(output_fn_contents, 'w') as f:
|
100 |
+
json.dump(dataset_contents, f)
|
101 |
+
|
utils.py
ADDED
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
import seaborn as sns
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import pandas as pd
|
6 |
+
import os
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# move to consts
|
10 |
+
buckets_age=['teens','twenties', 'thirties', 'fourties', 'fifties', 'sixties', 'seventies', 'eighties', 'nineties']
|
11 |
+
buckets_sex=["male", "female"]
|
12 |
+
|
13 |
+
def load_bigos_analyzer_report(fp:str)->dict:
|
14 |
+
with open(fp, 'r') as f:
|
15 |
+
data = json.load(f)
|
16 |
+
return data
|
17 |
+
|
18 |
+
def num_of_samples_per_split(dataset_hf):
|
19 |
+
# input - huggingface dataset object
|
20 |
+
# output - dictionary with statistics about number of samples per split
|
21 |
+
out_dict = {}
|
22 |
+
# number of samples per subset and split
|
23 |
+
metric = "samples"
|
24 |
+
print("Calculating {}".format(metric))
|
25 |
+
|
26 |
+
for split in dataset_hf.keys():
|
27 |
+
samples = dataset_hf[split].num_rows
|
28 |
+
##print(split, samples)
|
29 |
+
out_dict[split] = samples
|
30 |
+
# add number of samples for all splits
|
31 |
+
out_dict["all_splits"] = sum(out_dict.values())
|
32 |
+
|
33 |
+
return out_dict
|
34 |
+
|
35 |
+
def audio_duration_per_split(dataset_hf):
|
36 |
+
# input - huggingface dataset object
|
37 |
+
# output - dictionary with statistics about audio duration per split
|
38 |
+
out_dict = {}
|
39 |
+
metric = "audio[h]"
|
40 |
+
print("Calculating {}".format(metric))
|
41 |
+
|
42 |
+
|
43 |
+
for split in dataset_hf.keys():
|
44 |
+
#sampling_rate = dataset_hf[split]["sampling_rate"][0]
|
45 |
+
#audio_total_length_samples = 0
|
46 |
+
#audio_total_length_samples = sum(len(audio_file["array"]) for audio_file in dataset_hf["test"]["audio"])
|
47 |
+
audio_total_length_seconds = sum(dataset_hf[split]["audio_duration_seconds"])
|
48 |
+
audio_total_length_hours = round(audio_total_length_seconds / 3600,2)
|
49 |
+
out_dict[split] = audio_total_length_hours
|
50 |
+
#print(split, audio_total_length_hours)
|
51 |
+
# add number of samples for all splits
|
52 |
+
out_dict["all_splits"] = sum(out_dict.values())
|
53 |
+
return out_dict
|
54 |
+
|
55 |
+
def speakers_per_split(dataset_hf):
|
56 |
+
# input - huggingface dataset object
|
57 |
+
# output - dictionary with statistics about audio duration per split
|
58 |
+
out_dict = {}
|
59 |
+
metric = "speakers"
|
60 |
+
print("Calculating {}".format(metric))
|
61 |
+
|
62 |
+
|
63 |
+
for split in dataset_hf.keys():
|
64 |
+
# extract speakers from file_id
|
65 |
+
speakers_ids_all = [str(fileid).split("-")[4] for fileid in dataset_hf[split]["audioname"]]
|
66 |
+
speakers_ids_uniq = list(set(speakers_ids_all))
|
67 |
+
speakers_count = len(speakers_ids_uniq)
|
68 |
+
#print(split, speakers_count)
|
69 |
+
out_dict[split] = speakers_count
|
70 |
+
# add number of samples for all splits
|
71 |
+
out_dict["all_splits"] = sum(out_dict.values())
|
72 |
+
return out_dict
|
73 |
+
|
74 |
+
|
75 |
+
def uniq_utts_per_split(dataset_hf, dataset_hf_secret):
|
76 |
+
# input - huggingface dataset object
|
77 |
+
# output - dictionary with statistics about audio duration per split
|
78 |
+
out_dict = {}
|
79 |
+
metric = "utts_unique"
|
80 |
+
print("Calculating {}".format(metric))
|
81 |
+
utts_all = []
|
82 |
+
for split in dataset_hf.keys():
|
83 |
+
# extract speakers from file_id
|
84 |
+
if (split == "test"):
|
85 |
+
utts_split = dataset_hf_secret[split]["ref_orig"]
|
86 |
+
else:
|
87 |
+
utts_split = dataset_hf[split]["ref_orig"]
|
88 |
+
utts_all = utts_all + utts_split
|
89 |
+
utts_uniq = list(set(utts_split))
|
90 |
+
utts_uniq_count = len(utts_uniq)
|
91 |
+
#print(split, utts_uniq_count)
|
92 |
+
out_dict[split] = utts_uniq_count
|
93 |
+
# add number of samples for all splits
|
94 |
+
out_dict["all_splits"] = len(list(set(utts_all)))
|
95 |
+
return out_dict,utts_all
|
96 |
+
|
97 |
+
|
98 |
+
def words_per_split(dataset_hf, dataset_hf_secret):
|
99 |
+
# input - huggingface dataset object
|
100 |
+
# output - dictionary with statistics about audio duration per split
|
101 |
+
out_dict = {}
|
102 |
+
metric = "words"
|
103 |
+
print("Calculating {}".format(metric))
|
104 |
+
|
105 |
+
for split in dataset_hf.keys():
|
106 |
+
# extract speakers from file_id
|
107 |
+
if (split == "test"):
|
108 |
+
utts_all = dataset_hf_secret[split]["ref_orig"]
|
109 |
+
else:
|
110 |
+
utts_all = dataset_hf[split]["ref_orig"]
|
111 |
+
utts_lenghts = [len(utt.split(" ")) for utt in utts_all]
|
112 |
+
words_all_count = sum(utts_lenghts)
|
113 |
+
#print(split, words_all_count)
|
114 |
+
out_dict[split] = words_all_count
|
115 |
+
# add number of samples for all splits
|
116 |
+
out_dict["all_splits"] = sum(out_dict.values())
|
117 |
+
return out_dict
|
118 |
+
|
119 |
+
|
120 |
+
def uniq_words_per_split(dataset_hf, dataset_hf_secret):
|
121 |
+
# input - huggingface dataset object
|
122 |
+
# output - dictionary with statistics about audio duration per split
|
123 |
+
out_dict = {}
|
124 |
+
out_words_list = []
|
125 |
+
metric = "words_unique"
|
126 |
+
print("Calculating {}".format(metric))
|
127 |
+
|
128 |
+
|
129 |
+
for split in dataset_hf.keys():
|
130 |
+
# extract speakers from file_id
|
131 |
+
if (split == "test"):
|
132 |
+
utts_all = dataset_hf_secret[split]["ref_orig"]
|
133 |
+
else:
|
134 |
+
utts_all = dataset_hf[split]["ref_orig"]
|
135 |
+
|
136 |
+
words_all = " ".join(utts_all).split(" ")
|
137 |
+
words_uniq = list(set(words_all))
|
138 |
+
out_words_list = out_words_list + words_uniq
|
139 |
+
words_uniq_count = len(words_uniq)
|
140 |
+
#print(split, words_uniq_count)
|
141 |
+
out_dict[split] = words_uniq_count
|
142 |
+
|
143 |
+
# add number of samples for all splits
|
144 |
+
out_words_uniq = list(set((out_words_list)))
|
145 |
+
out_words_uniq_count = len(out_words_uniq)
|
146 |
+
out_dict["all_splits"] = out_words_uniq_count
|
147 |
+
#print("all", out_words_uniq_count)
|
148 |
+
|
149 |
+
return out_dict, out_words_uniq
|
150 |
+
|
151 |
+
|
152 |
+
def chars_per_split(dataset_hf, dataset_hf_secret):
|
153 |
+
# input - huggingface dataset object
|
154 |
+
# output - dictionary with statistics about audio duration per split
|
155 |
+
out_dict = {}
|
156 |
+
|
157 |
+
metric = "chars"
|
158 |
+
print("Calculating {}".format(metric))
|
159 |
+
|
160 |
+
|
161 |
+
for split in dataset_hf.keys():
|
162 |
+
# extract speakers from file_id
|
163 |
+
if (split=="test"):
|
164 |
+
utts_all = dataset_hf_secret[split]["ref_orig"]
|
165 |
+
else:
|
166 |
+
utts_all = dataset_hf[split]["ref_orig"]
|
167 |
+
words_all = " ".join(utts_all).split(" ")
|
168 |
+
chars_all = " ".join(words_all)
|
169 |
+
chars_all_count = len(chars_all)
|
170 |
+
#print(split, chars_all_count)
|
171 |
+
out_dict[split] = chars_all_count
|
172 |
+
# add number of samples for all splits
|
173 |
+
out_dict["all_splits"] = sum(out_dict.values())
|
174 |
+
return out_dict
|
175 |
+
|
176 |
+
|
177 |
+
def uniq_chars_per_split(dataset_hf, dataset_hf_secret):
|
178 |
+
# input - huggingface dataset object
|
179 |
+
# output - dictionary with statistics about audio duration per split
|
180 |
+
out_dict = {}
|
181 |
+
out_chars_list = []
|
182 |
+
metric = "chars_unique"
|
183 |
+
print("Calculating {}".format(metric))
|
184 |
+
|
185 |
+
|
186 |
+
for split in dataset_hf.keys():
|
187 |
+
# extract speakers from file_id
|
188 |
+
if(split == "test"):
|
189 |
+
utts_all = dataset_hf_secret[split]["ref_orig"]
|
190 |
+
else:
|
191 |
+
utts_all = dataset_hf[split]["ref_orig"]
|
192 |
+
words_all = " ".join(utts_all).split(" ")
|
193 |
+
words_uniq = list(set(words_all))
|
194 |
+
chars_uniq = list(set("".join(words_uniq)))
|
195 |
+
chars_uniq_count = len(chars_uniq)
|
196 |
+
#print(split, chars_uniq_count)
|
197 |
+
out_dict[split] = chars_uniq_count
|
198 |
+
out_chars_list = out_chars_list + chars_uniq
|
199 |
+
# add number of samples for all splits
|
200 |
+
out_chars_uniq = list(set((out_chars_list)))
|
201 |
+
out_chars_uniq_count = len(out_chars_uniq)
|
202 |
+
out_dict["all_splits"] = out_chars_uniq_count
|
203 |
+
#print("all", out_chars_uniq_count)
|
204 |
+
|
205 |
+
return out_dict, out_chars_uniq
|
206 |
+
|
207 |
+
def meta_cov_per_split(dataset_hf, meta_field):
|
208 |
+
# input - huggingface dataset object
|
209 |
+
# output - dictionary with statistics about audio duration per split
|
210 |
+
no_meta=False
|
211 |
+
# TODO move to config
|
212 |
+
if meta_field == 'speaker_age':
|
213 |
+
buckets = buckets_age
|
214 |
+
if meta_field == 'speaker_sex':
|
215 |
+
buckets = buckets_sex
|
216 |
+
out_dict = {}
|
217 |
+
metric = "meta_cov_" + meta_field
|
218 |
+
print("Calculating {}".format(metric))
|
219 |
+
|
220 |
+
meta_info_all = 0
|
221 |
+
meta_info_not_null_all = 0
|
222 |
+
for split in dataset_hf.keys():
|
223 |
+
|
224 |
+
# extract speakers from file_id
|
225 |
+
meta_info = dataset_hf[split][meta_field]
|
226 |
+
meta_info_count = len(meta_info)
|
227 |
+
meta_info_all += meta_info_count
|
228 |
+
# calculate coverage
|
229 |
+
meta_info_not_null_count = len([x for x in meta_info if x != "N/A"])
|
230 |
+
if meta_info_not_null_count == 0:
|
231 |
+
out_dict[split] = "N/A"
|
232 |
+
continue
|
233 |
+
meta_info_not_null_all += meta_info_not_null_count
|
234 |
+
meta_info_coverage = round(meta_info_not_null_count / meta_info_count, 2)
|
235 |
+
#print(split, meta_info_coverage)
|
236 |
+
|
237 |
+
# add number of samples for all splits
|
238 |
+
out_dict[split] = meta_info_coverage
|
239 |
+
|
240 |
+
# add number of samples for all splits
|
241 |
+
if (meta_info_not_null_all == 0):
|
242 |
+
out_dict["all_splits"] = "N/A"
|
243 |
+
else:
|
244 |
+
out_dict["all_splits"] = round(meta_info_not_null_all/meta_info_all,2 )
|
245 |
+
return out_dict
|
246 |
+
|
247 |
+
|
248 |
+
def speech_rate_words_per_split(dataset_hf, dataset_hf_secret):
|
249 |
+
# input - huggingface dataset object
|
250 |
+
# output - dictionary with statistics about audio duration per split
|
251 |
+
out_dict = {}
|
252 |
+
metric = "words_per_second"
|
253 |
+
print("Calculating {}".format(metric))
|
254 |
+
|
255 |
+
words_all_count = 0
|
256 |
+
audio_total_length_seconds = 0
|
257 |
+
|
258 |
+
for split in dataset_hf.keys():
|
259 |
+
# extract speakers from file_id
|
260 |
+
if (split == "test"):
|
261 |
+
utts_split = dataset_hf_secret[split]["ref_orig"]
|
262 |
+
else:
|
263 |
+
utts_split = dataset_hf[split]["ref_orig"]
|
264 |
+
words_split = " ".join(utts_split).split(" ")
|
265 |
+
words_split_count = len(words_split)
|
266 |
+
words_all_count += words_split_count
|
267 |
+
audio_split_length_seconds = sum(dataset_hf[split]["audio_duration_seconds"])
|
268 |
+
audio_total_length_seconds += audio_split_length_seconds
|
269 |
+
speech_rate = round(words_split_count / audio_split_length_seconds, 2)
|
270 |
+
#print(split, speech_rate)
|
271 |
+
out_dict[split] = speech_rate
|
272 |
+
# add number of samples for all splits
|
273 |
+
out_dict["all_splits"] = round(words_all_count / audio_total_length_seconds, 2)
|
274 |
+
return out_dict
|
275 |
+
|
276 |
+
def speech_rate_chars_per_split(dataset_hf, dataset_hf_secret):
|
277 |
+
# input - huggingface dataset object
|
278 |
+
# output - dictionary with statistics about audio duration per split
|
279 |
+
out_dict = {}
|
280 |
+
metric = "chars_per_second"
|
281 |
+
print("Calculating {}".format(metric))
|
282 |
+
|
283 |
+
chars_all_count = 0
|
284 |
+
audio_total_length_seconds = 0
|
285 |
+
|
286 |
+
for split in dataset_hf.keys():
|
287 |
+
# extract speakers from file_id
|
288 |
+
if (split == "test"):
|
289 |
+
utts_split = dataset_hf_secret[split]["ref_orig"]
|
290 |
+
else:
|
291 |
+
utts_split = dataset_hf[split]["ref_orig"]
|
292 |
+
words_split = " ".join(utts_split).split(" ")
|
293 |
+
chars_split_count = len("".join(words_split))
|
294 |
+
chars_all_count += chars_split_count
|
295 |
+
audio_split_length_seconds = sum(dataset_hf[split]["audio_duration_seconds"])
|
296 |
+
audio_total_length_seconds += audio_split_length_seconds
|
297 |
+
speech_rate = round(chars_split_count / audio_split_length_seconds, 2)
|
298 |
+
#print(split, speech_rate)
|
299 |
+
out_dict[split] = speech_rate
|
300 |
+
# add number of samples for all splits
|
301 |
+
out_dict["all_splits"] = round(chars_all_count / audio_total_length_seconds, 2)
|
302 |
+
return out_dict
|
303 |
+
|
304 |
+
|
305 |
+
# distribution of speaker age
|
306 |
+
def meta_distribution_text(dataset_hf, meta_field):
|
307 |
+
no_meta=False
|
308 |
+
if meta_field == 'speaker_age':
|
309 |
+
buckets = buckets_age
|
310 |
+
if meta_field == 'speaker_sex':
|
311 |
+
buckets = buckets_sex
|
312 |
+
|
313 |
+
# input - huggingface dataset object
|
314 |
+
# output - dictionary with statistics about audio duration per split
|
315 |
+
out_dict = {}
|
316 |
+
metric = "distribution_" + meta_field
|
317 |
+
print("Calculating {}".format(metric))
|
318 |
+
|
319 |
+
|
320 |
+
values_count_total = {}
|
321 |
+
for bucket in buckets:
|
322 |
+
values_count_total[bucket]=0
|
323 |
+
|
324 |
+
for split in dataset_hf.keys():
|
325 |
+
out_dict[split] = {}
|
326 |
+
# extract speakers from file_id
|
327 |
+
meta_info = dataset_hf[split][meta_field]
|
328 |
+
meta_info_not_null = [x for x in meta_info if x != "N/A"]
|
329 |
+
|
330 |
+
if len(meta_info_not_null) == 0:
|
331 |
+
out_dict[split]="N/A"
|
332 |
+
no_meta=True
|
333 |
+
continue
|
334 |
+
for bucket in buckets:
|
335 |
+
values_count = meta_info_not_null.count(bucket)
|
336 |
+
values_count_total[bucket] += values_count
|
337 |
+
out_dict[split][bucket] = round(values_count/len(meta_info_not_null),2)
|
338 |
+
#print(split, out_dict[split])
|
339 |
+
|
340 |
+
# add number of samples for all splits
|
341 |
+
if (no_meta):
|
342 |
+
out_dict["all_splits"] = "N/A"
|
343 |
+
return out_dict
|
344 |
+
|
345 |
+
out_dict["all_splits"] = {}
|
346 |
+
# calculate total number of samples in values_count_total
|
347 |
+
for bucket in buckets:
|
348 |
+
total_samples = sum(values_count_total.values())
|
349 |
+
out_dict["all_splits"][bucket] = round(values_count_total[bucket]/total_samples,2)
|
350 |
+
return out_dict
|
351 |
+
|
352 |
+
|
353 |
+
|
354 |
+
def recordings_per_speaker(dataset_hf):
|
355 |
+
recordings_per_speaker_stats_dict = {}
|
356 |
+
|
357 |
+
# input - huggingface dataset object
|
358 |
+
# output - dictionary with statistics about audio duration per split
|
359 |
+
out_dict_stats = {}
|
360 |
+
out_dict_contents = {}
|
361 |
+
|
362 |
+
metric = "recordings_per_speaker"
|
363 |
+
print("Calculating {}".format(metric))
|
364 |
+
|
365 |
+
recordings_per_speaker_stats_dict_all = {}
|
366 |
+
recordings_total=0
|
367 |
+
|
368 |
+
speakers_total = 0
|
369 |
+
|
370 |
+
for split in dataset_hf.keys():
|
371 |
+
# extract speakers from file_id
|
372 |
+
audiopaths = dataset_hf[split]["audioname"]
|
373 |
+
speaker_prefixes = [str(fileid).split("-")[0:5] for fileid in audiopaths]
|
374 |
+
|
375 |
+
speakers_dict_split = {}
|
376 |
+
# create dictionary with list of audio paths matching speaker prefix
|
377 |
+
|
378 |
+
# Create initial dictionary keys from speaker prefixes
|
379 |
+
for speaker_prefix in speaker_prefixes:
|
380 |
+
speaker_prefix_str = "-".join(speaker_prefix)
|
381 |
+
speakers_dict_split[speaker_prefix_str] = []
|
382 |
+
|
383 |
+
# Populate the dictionary with matching audio paths
|
384 |
+
for audio_path in audiopaths:
|
385 |
+
for speaker_prefix_str in speakers_dict_split.keys():
|
386 |
+
if speaker_prefix_str in audio_path:
|
387 |
+
speakers_dict_split[speaker_prefix_str].append(audio_path)
|
388 |
+
|
389 |
+
|
390 |
+
# iterate of speaker_dict prefixes and calculate number of recordings per speaker.
|
391 |
+
recordings_per_speaker_stats_dict_split = {}
|
392 |
+
for speaker_prefix_str in speakers_dict_split.keys():
|
393 |
+
recordings_per_speaker_stats_dict_split[speaker_prefix_str] = len(speakers_dict_split[speaker_prefix_str])
|
394 |
+
|
395 |
+
out_dict_contents[split] = {}
|
396 |
+
out_dict_contents[split] = recordings_per_speaker_stats_dict_split
|
397 |
+
|
398 |
+
# use recordings_per_speaker_stats to calculate statistics like min, max, avg, median, std
|
399 |
+
out_dict_stats[split] = {}
|
400 |
+
speakers_split = len(list(recordings_per_speaker_stats_dict_split.keys()))
|
401 |
+
speakers_total += speakers_split
|
402 |
+
|
403 |
+
recordings_split = len(audiopaths)
|
404 |
+
recordings_total += recordings_split
|
405 |
+
|
406 |
+
average_recordings_per_speaker = round( recordings_split / speakers_split,2)
|
407 |
+
out_dict_stats[split]["average"] = average_recordings_per_speaker
|
408 |
+
out_dict_stats[split]["std"] = round(np.std(list(recordings_per_speaker_stats_dict_split.values())),2)
|
409 |
+
out_dict_stats[split]["median"] = np.median(list(recordings_per_speaker_stats_dict_split.values()))
|
410 |
+
out_dict_stats[split]["min"] = min(recordings_per_speaker_stats_dict_split.values())
|
411 |
+
out_dict_stats[split]["max"] = max(recordings_per_speaker_stats_dict_split.values())
|
412 |
+
|
413 |
+
recordings_per_speaker_stats_dict_all = recordings_per_speaker_stats_dict_all | recordings_per_speaker_stats_dict_split
|
414 |
+
# add number of samples for all splits
|
415 |
+
|
416 |
+
average_recordings_per_speaker_all = round( recordings_total / speakers_total , 2)
|
417 |
+
out_dict_stats["all_splits"] = {}
|
418 |
+
out_dict_stats["all_splits"]["average"] = average_recordings_per_speaker_all
|
419 |
+
out_dict_stats["all_splits"]["std"] = round(np.std(list(recordings_per_speaker_stats_dict_all.values())),2)
|
420 |
+
out_dict_stats["all_splits"]["median"] = np.median(list(recordings_per_speaker_stats_dict_all.values()))
|
421 |
+
out_dict_stats["all_splits"]["min"] = min(recordings_per_speaker_stats_dict_all.values())
|
422 |
+
out_dict_stats["all_splits"]["max"] = max(recordings_per_speaker_stats_dict_all.values())
|
423 |
+
out_dict_contents["all_splits"] = recordings_per_speaker_stats_dict_all
|
424 |
+
return out_dict_stats, out_dict_contents
|
425 |
+
|
426 |
+
|
427 |
+
def meta_distribution_bar_plot(dataset_hf, output_dir, dimension = "speaker_sex"):
|
428 |
+
pass
|
429 |
+
|
430 |
+
def meta_distribution_violin_plot(dataset_hf, output_dir, metric = "audio_duration_seconds", dimension = "speaker_sex"):
|
431 |
+
# input - huggingface dataset object
|
432 |
+
# output - figure with distribution of audio duration per sex
|
433 |
+
out_dict = {}
|
434 |
+
|
435 |
+
print("Generating violin plat for metric {} for dimension {}".format(metric, dimension))
|
436 |
+
|
437 |
+
# drop samples for which dimension column values are equal to "N/A"
|
438 |
+
for split in dataset_hf.keys():
|
439 |
+
df_dataset = pd.DataFrame(dataset_hf[split])
|
440 |
+
|
441 |
+
# remove values equal to "N/A" for column dimension
|
442 |
+
df_filtered = df_dataset[df_dataset[dimension] != "N/A"]
|
443 |
+
df_filtered = df_filtered[df_filtered[dimension] != "other"]
|
444 |
+
df_filtered = df_filtered[df_filtered[dimension] != "unknown"]
|
445 |
+
if df_filtered.empty:
|
446 |
+
print("No data for split {} and dimension {}".format(split, dimension))
|
447 |
+
continue
|
448 |
+
|
449 |
+
if (len(df_filtered)>=5000):
|
450 |
+
sample_size = 5000
|
451 |
+
print("Selecting sample of size {}".format(sample_size))
|
452 |
+
else:
|
453 |
+
sample_size = len(df_filtered)
|
454 |
+
print("Selecting full split of size {}".format(sample_size))
|
455 |
+
|
456 |
+
df = df_filtered.sample(sample_size)
|
457 |
+
# if df_filtered is empty, skip violin plot generation for this split and dimension
|
458 |
+
|
459 |
+
print("Generating plot")
|
460 |
+
plt.figure(figsize=(20, 15))
|
461 |
+
plot = sns.violinplot(data = df, hue=dimension, x='dataset', y=metric, split=True, fill = False,inner = 'quart', legend='auto', common_norm=True)
|
462 |
+
plot.set_xticklabels(plot.get_xticklabels(), rotation = 30, horizontalalignment = 'right')
|
463 |
+
|
464 |
+
plt.title('Violin plot of {} by {} for split {}'.format(metric, dimension, split))
|
465 |
+
plt.xlabel(dimension)
|
466 |
+
plt.ylabel(metric)
|
467 |
+
|
468 |
+
|
469 |
+
#plt.show(
|
470 |
+
# save figure to file
|
471 |
+
os.makedirs(output_dir, exist_ok=True)
|
472 |
+
output_fn = os.path.join(output_dir, metric + "-" + dimension + "-" + split + ".png")
|
473 |
+
plt.savefig(output_fn)
|
474 |
+
print("Plot generation completed")
|
475 |
+
|
476 |
+
def read_reports(dataset_name):
|
477 |
+
|
478 |
+
json_contents = "./reports/{}/dataset_contents.json".format(dataset_name)
|
479 |
+
json_stats = "reports/{}/dataset_statistics.json".format(dataset_name)
|
480 |
+
|
481 |
+
with open(json_contents, 'r') as file:
|
482 |
+
contents_dict = json.load(file)
|
483 |
+
|
484 |
+
with open(json_stats, 'r') as file:
|
485 |
+
stats_dict = json.load(file)
|
486 |
+
|
487 |
+
return(stats_dict, contents_dict)
|
488 |
+
|
489 |
+
|
490 |
+
def add_test_split_stats_from_secret_dataset(stats_dict_public, stats_dict_secret):
|
491 |
+
# merge contents if dictionaries for fields utts, words, words_unique, chars, chars_unique and speech_rate
|
492 |
+
for dataset in stats_dict_public.keys():
|
493 |
+
print(dataset)
|
494 |
+
for metric in stats_dict_secret[dataset].keys():
|
495 |
+
for split in stats_dict_secret[dataset][metric].keys():
|
496 |
+
if split == "test":
|
497 |
+
stats_dict_public[dataset][metric][split] = stats_dict_secret[dataset][metric][split]
|
498 |
+
|
499 |
+
return(stats_dict_public)
|
500 |
+
|
501 |
+
def dict_to_multindex_df(dict_in, all_splits=False):
|
502 |
+
# Creating a MultiIndex DataFrame
|
503 |
+
rows = []
|
504 |
+
for dataset, metrics in dict_in.items():
|
505 |
+
if (dataset == "all"):
|
506 |
+
continue
|
507 |
+
for metric, splits in metrics.items():
|
508 |
+
for split, value in splits.items():
|
509 |
+
if (all_splits):
|
510 |
+
if (split == "all_splits"):
|
511 |
+
rows.append((dataset, metric, split, value))
|
512 |
+
else:
|
513 |
+
if (split == "all_splits"):
|
514 |
+
continue
|
515 |
+
rows.append((dataset, metric, split, value))
|
516 |
+
|
517 |
+
# Convert to DataFrame
|
518 |
+
df = pd.DataFrame(rows, columns=['dataset', 'metric', 'split', 'value'])
|
519 |
+
df.set_index(['dataset', 'metric', 'split'], inplace=True)
|
520 |
+
|
521 |
+
return(df)
|
522 |
+
|
523 |
+
|
524 |
+
def dict_to_multindex_df_all_splits(dict_in):
|
525 |
+
# Creating a MultiIndex DataFrame
|
526 |
+
rows = []
|
527 |
+
for dataset, metrics in dict_in.items():
|
528 |
+
if (dataset == "all"):
|
529 |
+
continue
|
530 |
+
for metric, splits in metrics.items():
|
531 |
+
for split, value in splits.items():
|
532 |
+
if (split == "all_splits"):
|
533 |
+
rows.append((dataset, metric, split, value))
|
534 |
+
|
535 |
+
# Convert to DataFrame
|
536 |
+
df = pd.DataFrame(rows, columns=['dataset', 'metric', 'split', 'value'])
|
537 |
+
df.set_index(['dataset', 'metric', 'split'], inplace=True)
|
538 |
+
|
539 |
+
return(df)
|
540 |
+
|
541 |
+
|
542 |
+
def extract_stats_to_agg(df_multindex_per_split, metrics):
|
543 |
+
# input - multiindex dataframe has three indexes - dataset, metric, split
|
544 |
+
|
545 |
+
# select only relevant metrics
|
546 |
+
df_agg_splits = df_multindex_per_split.loc[(slice(None), metrics), :]
|
547 |
+
|
548 |
+
# unstack - move rows per split to columns
|
549 |
+
df_agg_splits = df_agg_splits.unstack(level ='split')
|
550 |
+
|
551 |
+
# aggregate values for all splits
|
552 |
+
df_agg_splits['value', 'total'] = df_agg_splits['value'].sum(axis=1)
|
553 |
+
# drop columns with splits
|
554 |
+
df_agg_splits.columns = df_agg_splits.columns.droplevel(0)
|
555 |
+
columns_to_drop = ['test', 'train', 'validation']
|
556 |
+
df_agg_splits.drop(columns = columns_to_drop, inplace = True)
|
557 |
+
|
558 |
+
# move rows corresponding to specific metrics into specific columns
|
559 |
+
df_agg_splits = df_agg_splits.unstack(level ='metric')
|
560 |
+
df_agg_splits.columns = df_agg_splits.columns.droplevel(0)
|
561 |
+
|
562 |
+
return(df_agg_splits)
|
563 |
+
|
564 |
+
|
565 |
+
|
566 |
+
def extract_stats_all_splits(df_multiindex_all_splits, metrics):
|
567 |
+
|
568 |
+
df_all_splits = df_multiindex_all_splits.loc[(slice(None), metrics), :]
|
569 |
+
|
570 |
+
df_all_splits = df_all_splits.unstack(level ='metric')
|
571 |
+
df_all_splits.columns = df_all_splits.columns.droplevel(0)
|
572 |
+
|
573 |
+
#print(df_all_splits)
|
574 |
+
df_all_splits = df_all_splits.droplevel('split', axis=0)
|
575 |
+
|
576 |
+
return(df_all_splits)
|
577 |
+
|
578 |
+
def extract_stats_for_dataset_card(df_multindex_per_split, subset, metrics, add_total=False):
|
579 |
+
|
580 |
+
print(df_multindex_per_split)
|
581 |
+
df_metrics_subset = df_multindex_per_split
|
582 |
+
|
583 |
+
df_metrics_subset = df_metrics_subset.unstack(level ='split')
|
584 |
+
df_metrics_subset.columns = df_metrics_subset.columns.droplevel(0)
|
585 |
+
|
586 |
+
df_metrics_subset = df_metrics_subset.loc[(slice(None), metrics), :]
|
587 |
+
|
588 |
+
df_metrics_subset = df_metrics_subset.query("dataset == '{}'".format(subset))
|
589 |
+
# change order of columns to train validation test
|
590 |
+
df_metrics_subset.reset_index(inplace=True)
|
591 |
+
if (add_total):
|
592 |
+
new_columns = ['metric', 'train', 'validation', 'test', 'total']
|
593 |
+
total = df_metrics_subset[['train', 'validation','test']].sum(axis=1)
|
594 |
+
df_metrics_subset['total'] = total
|
595 |
+
else:
|
596 |
+
new_columns = ['metric', 'train', 'validation', 'test']
|
597 |
+
|
598 |
+
df_metrics_subset = df_metrics_subset.reindex(columns=new_columns)
|
599 |
+
df_metrics_subset.set_index('metric', inplace=True)
|
600 |
+
|
601 |
+
return(df_metrics_subset)
|