Spaces:
Runtime error
Runtime error
import os | |
from timeit import default_timer as timer | |
from typing import Tuple | |
from pathlib import Path | |
import gradio as gr | |
import torch | |
from torch import nn | |
from torchvision import transforms | |
from model import create_effnetb2_model | |
class_names = ["pizza", "steak", "sushi"] | |
device = "cpu" | |
# Create model | |
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=len(class_names)) | |
# Load saved weights | |
effnetb2.load_state_dict(torch.load("effnetb2.pth", map_location=torch.device(device))) | |
# Define predict function | |
def predict(img: Image) -> Tuple[dict, float]: | |
"""Uses EffnetB2 model to transform and predict on img. Returns prediction | |
probabilities and time taken. | |
Args: | |
img (PIL.Image): Image to predict on. | |
Returns: | |
A tuple (pred_labels_and_probs, pred_time), where pred_labels_and_probs | |
is a dict mapping each class name to the probability the model assigns to | |
it, and pred_time is the time taken to predict (in seconds). | |
""" | |
start_time = timer() | |
img = effnetb2_transforms(img).unsqueeze(0) | |
effnetb2.eval() | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) | |
for i in range(len(class_names))} | |
pred_time = round(timer() - start_time, 4) | |
return pred_labels_and_probs, pred_time | |
# Initialize Gradio app | |
title = "FoodVision Mini" | |
description = "EfficientNetB2 feature extractor to classify images of food as pizza, steak, or sushi." | |
article = "From the [Zero to Mastery PyTorch tutorial](https://www.learnpytorch.io/09_pytorch_model_deployment/)" | |
examples = [list(example) for example in Path("examples").glob("*.jpg")] | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), | |
gr.Number(label="Prediction time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article, | |
) | |
demo.lauch() | |