foodvision_mini / app.py
allispaul's picture
load on cpu
123e402
raw
history blame
2.04 kB
import os
from timeit import default_timer as timer
from typing import Tuple
from pathlib import Path
import gradio as gr
import torch
from torch import nn
from torchvision import transforms
from model import create_effnetb2_model
class_names = ["pizza", "steak", "sushi"]
device = "cpu"
# Create model
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=len(class_names))
# Load saved weights
effnetb2.load_state_dict(torch.load("effnetb2.pth", map_location=torch.device(device)))
# Define predict function
def predict(img: Image) -> Tuple[dict, float]:
"""Uses EffnetB2 model to transform and predict on img. Returns prediction
probabilities and time taken.
Args:
img (PIL.Image): Image to predict on.
Returns:
A tuple (pred_labels_and_probs, pred_time), where pred_labels_and_probs
is a dict mapping each class name to the probability the model assigns to
it, and pred_time is the time taken to predict (in seconds).
"""
start_time = timer()
img = effnetb2_transforms(img).unsqueeze(0)
effnetb2.eval()
with torch.inference_mode():
pred_probs = torch.softmax(effnetb2(img), dim=1)
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i])
for i in range(len(class_names))}
pred_time = round(timer() - start_time, 4)
return pred_labels_and_probs, pred_time
# Initialize Gradio app
title = "FoodVision Mini"
description = "EfficientNetB2 feature extractor to classify images of food as pizza, steak, or sushi."
article = "From the [Zero to Mastery PyTorch tutorial](https://www.learnpytorch.io/09_pytorch_model_deployment/)"
examples = [list(example) for example in Path("examples").glob("*.jpg")]
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Label(num_top_classes=3, label="Predictions"),
gr.Number(label="Prediction time (s)")],
examples=example_list,
title=title,
description=description,
article=article,
)
demo.lauch()