#################################################### #Mit Streaming def predict(message, history): history_openai_format = [] for human, assistant in history: history_openai_format.append({"role": "user", "content": human }) history_openai_format.append({"role": "assistant", "content":assistant}) history_openai_format.append({"role": "user", "content": message}) response = openai.ChatCompletion.create( model='gpt-3.5-turbo', messages= history_openai_format, temperature=1.0, stream=True ) partial_message = "" for chunk in response: if len(chunk['choices'][0]['delta']) != 0: partial_message = partial_message + chunk['choices'][0]['delta']['content'] yield partial_message gr.ChatInterface(predict).queue().launch() ########################################################## #OpenAI Chatinterface from langchain.chat_models import ChatOpenAI from langchain.schema import AIMessage, HumanMessage import openai import gradio as gr os.environ["OPENAI_API_KEY"] = "sk-..." # Replace with your key llm = ChatOpenAI(temperature=1.0, model='gpt-3.5-turbo-0613') def predict(message, history): history_langchain_format = [] for human, ai in history: history_langchain_format.append(HumanMessage(content=human)) history_langchain_format.append(AIMessage(content=ai)) history_langchain_format.append(HumanMessage(content=message)) gpt_response = llm(history_langchain_format) return gpt_response.content gr.ChatInterface(predict).launch()