Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,8 @@ import gradio as gr
|
|
7 |
from langchain.evaluation import load_evaluator
|
8 |
from pprint import pprint as print
|
9 |
import time
|
|
|
|
|
10 |
|
11 |
#from langchain.chains import LLMChain, RetrievalQA
|
12 |
#from langchain.retrievers.self_query.base import SelfQueryRetriever
|
@@ -258,14 +260,27 @@ def generate_prompt_with_history_openai(prompt, history):
|
|
258 |
|
259 |
history_openai_format.append({"role": "user", "content": prompt})
|
260 |
return history_openai_format
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
##############################################
|
264 |
##############################################
|
265 |
##############################################
|
266 |
# generate function
|
267 |
##############################################
|
268 |
-
def generate(
|
269 |
#mit RAG
|
270 |
if (rag_option is None):
|
271 |
raise gr.Error("Retrieval Augmented Generation ist erforderlich.")
|
@@ -323,11 +338,23 @@ def generate(text, history, rag_option, model_option, k=3, temperature=0.5, max
|
|
323 |
#return chatbot_message
|
324 |
|
325 |
#Antwort als Stream ausgeben...
|
326 |
-
for i in range(len(chatbot_message)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
time.sleep(0.03)
|
328 |
-
yield
|
329 |
-
|
330 |
-
|
|
|
|
|
|
|
|
|
|
|
331 |
|
332 |
|
333 |
#zum Evaluieren:
|
@@ -354,11 +381,134 @@ evaluator = load_evaluator("criteria", criteria="conciseness", llm=evaluation_ll
|
|
354 |
#Beschreibung oben in GUI
|
355 |
################################################
|
356 |
print ("Start GUI")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
-
description =
|
359 |
<strong>Retrieval Augmented Generation (RAG)</strong> auf <strong>externen Daten</strong> verwendet.\n\n
|
360 |
-
|
361 |
-
css =
|
362 |
examples=[['Was ist ChtGPT-4?'],['schreibe ein Python Programm, dass die GPT-4 API aufruft.']]
|
363 |
|
364 |
additional_inputs = [
|
@@ -390,3 +540,4 @@ with gr.Blocks() as demo:
|
|
390 |
#chatbot_stream.like(vote, None, None)
|
391 |
chat_interface_stream.queue().launch()
|
392 |
|
|
|
|
7 |
from langchain.evaluation import load_evaluator
|
8 |
from pprint import pprint as print
|
9 |
import time
|
10 |
+
from utils import *
|
11 |
+
from beschreibungen import *
|
12 |
|
13 |
#from langchain.chains import LLMChain, RetrievalQA
|
14 |
#from langchain.retrievers.self_query.base import SelfQueryRetriever
|
|
|
260 |
|
261 |
history_openai_format.append({"role": "user", "content": prompt})
|
262 |
return history_openai_format
|
263 |
+
|
264 |
+
##############################################
|
265 |
+
#History - die Frage oder das File eintragen...
|
266 |
+
##############################################
|
267 |
+
def add_text(history, text):
|
268 |
+
history = history + [(text, None)]
|
269 |
+
return history, "" #gr.Textbox(value="", interactive=False)
|
270 |
+
|
271 |
+
def add_file(history, file, prompt):
|
272 |
+
if (prompt == ""):
|
273 |
+
history = history + [((file.name,), None)]
|
274 |
+
else:
|
275 |
+
history = history + [((file.name,), None), (prompt, None)]
|
276 |
+
return history, ""
|
277 |
|
278 |
##############################################
|
279 |
##############################################
|
280 |
##############################################
|
281 |
# generate function
|
282 |
##############################################
|
283 |
+
def generate(history, text, rag_option, model_option, k=3, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,):
|
284 |
#mit RAG
|
285 |
if (rag_option is None):
|
286 |
raise gr.Error("Retrieval Augmented Generation ist erforderlich.")
|
|
|
338 |
#return chatbot_message
|
339 |
|
340 |
#Antwort als Stream ausgeben...
|
341 |
+
#for i in range(len(chatbot_message)):
|
342 |
+
#time.sleep(0.03)
|
343 |
+
#yield chatbot_message[: i+1]
|
344 |
+
|
345 |
+
#Antwort als Stream ausgeben...
|
346 |
+
history[-1][1] = ""
|
347 |
+
for character in chatbot_message:
|
348 |
+
history[-1][1] += character
|
349 |
time.sleep(0.03)
|
350 |
+
yield history, "Generating"
|
351 |
+
if shared_state.interrupted:
|
352 |
+
shared_state.recover()
|
353 |
+
try:
|
354 |
+
yield history, "Stop: Success"
|
355 |
+
return
|
356 |
+
except:
|
357 |
+
pass
|
358 |
|
359 |
|
360 |
#zum Evaluieren:
|
|
|
381 |
#Beschreibung oben in GUI
|
382 |
################################################
|
383 |
print ("Start GUI")
|
384 |
+
with open("custom.css", "r", encoding="utf-8") as f:
|
385 |
+
customCSS = f.read()
|
386 |
+
|
387 |
+
with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
|
388 |
+
history = gr.State([])
|
389 |
+
with gr.Row():
|
390 |
+
gr.HTML("LI Chatot")
|
391 |
+
status_display = gr.Markdown("Success", elem_id="status_display")
|
392 |
+
gr.Markdown(description_top)
|
393 |
+
with gr.Row():
|
394 |
+
with gr.Column(scale=5):
|
395 |
+
with gr.Row():
|
396 |
+
chatbot = gr.Chatbot(elem_id="chuanhu_chatbot")
|
397 |
+
with gr.Row():
|
398 |
+
with gr.Column(scale=12):
|
399 |
+
user_input = gr.Textbox(
|
400 |
+
show_label=False, placeholder="Gib hier deinen Prompt ein...",
|
401 |
+
container=False
|
402 |
+
)
|
403 |
+
with gr.Column(min_width=70, scale=1):
|
404 |
+
submitBtn = gr.Button("Senden")
|
405 |
+
with gr.Column(min_width=70, scale=1):
|
406 |
+
cancelBtn = gr.Button("Stop")
|
407 |
+
with gr.Row():
|
408 |
+
emptyBtn = gr.ClearButton( [user_input, chatbot], value="🧹 Neue Session")
|
409 |
+
btn = gr.UploadButton("📁", file_types=["image", "video", "audio"])
|
410 |
+
|
411 |
+
with gr.Column():
|
412 |
+
with gr.Column(min_width=50, scale=1):
|
413 |
+
with gr.Tab(label="Parameter Einstellung"):
|
414 |
+
gr.Markdown("# Parameters")
|
415 |
+
rag_option = gr.Radio(["Aus", "An"], label="RAG - LI Erweiterungen", value = "Aus")
|
416 |
+
model_option = gr.Radio(["HuggingFace1", "HuggingFace2"], label="Modellauswahl", value = "HuggingFace1")
|
417 |
+
|
418 |
+
top_p = gr.Slider(
|
419 |
+
minimum=-0,
|
420 |
+
maximum=1.0,
|
421 |
+
value=0.95,
|
422 |
+
step=0.05,
|
423 |
+
interactive=True,
|
424 |
+
label="Top-p",
|
425 |
+
)
|
426 |
+
temperature = gr.Slider(
|
427 |
+
minimum=0.1,
|
428 |
+
maximum=2.0,
|
429 |
+
value=1,
|
430 |
+
step=0.1,
|
431 |
+
interactive=True,
|
432 |
+
label="Temperature",
|
433 |
+
)
|
434 |
+
max_length_tokens = gr.Slider(
|
435 |
+
minimum=0,
|
436 |
+
maximum=512,
|
437 |
+
value=512,
|
438 |
+
step=8,
|
439 |
+
interactive=True,
|
440 |
+
label="Max Generation Tokens",
|
441 |
+
)
|
442 |
+
max_context_length_tokens = gr.Slider(
|
443 |
+
minimum=0,
|
444 |
+
maximum=4096,
|
445 |
+
value=2048,
|
446 |
+
step=128,
|
447 |
+
interactive=True,
|
448 |
+
label="Max History Tokens",
|
449 |
+
)
|
450 |
+
repetition_penalty=gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True)
|
451 |
+
anzahl_docs = gr.Slider(label="Anzahl Vergleichsdokumente", value=3, minimum=1, maximum=10, step=1, interactive=True, info="wie viele Dokumententeile aus dem Vektorstore an den prompt gehängt werden", visible=True),
|
452 |
+
|
453 |
+
gr.Markdown(description)
|
454 |
+
|
455 |
+
#Argumente für generate Funktion als Input
|
456 |
+
predict_args = dict(
|
457 |
+
fn=generate,
|
458 |
+
inputs=[
|
459 |
+
user_input,
|
460 |
+
chatbot,
|
461 |
+
#history,
|
462 |
+
rag_option,
|
463 |
+
model_option,
|
464 |
+
anzahl_docs,
|
465 |
+
top_p,
|
466 |
+
temperature,
|
467 |
+
max_length_tokens,
|
468 |
+
max_context_length_tokens,
|
469 |
+
],
|
470 |
+
outputs=[ chatbot, status_display], #[ chatbot, history, status_display],
|
471 |
+
show_progress=True,
|
472 |
+
)
|
473 |
+
|
474 |
+
|
475 |
+
reset_args = dict(
|
476 |
+
fn=reset_textbox, inputs=[], outputs=[user_input, status_display]
|
477 |
+
)
|
478 |
+
|
479 |
+
# Chatbot
|
480 |
+
transfer_input_args = dict(
|
481 |
+
fn=add_text, inputs=[ chatbot, user_input], outputs=[chatbot, user_input], show_progress=True
|
482 |
+
)
|
483 |
+
|
484 |
+
predict_event1 = user_input.submit(**transfer_input_args ,queue=False,).then(**predict_args)
|
485 |
+
predict_event3 = btn.upload(add_file, [chatbot, btn, user_input], [chatbot, user_input],queue=False, ).then(**predict_args)
|
486 |
+
predict_event2 = submitBtn.click(**transfer_input_args,queue=False,).then(**predict_args)
|
487 |
+
|
488 |
+
cancelBtn.click(
|
489 |
+
cancel_outputing, [], [status_display],
|
490 |
+
cancels=[
|
491 |
+
predict_event1,predict_event2, predict_event3
|
492 |
+
]
|
493 |
+
)
|
494 |
+
demo.title = "LI-ChatBot"
|
495 |
+
|
496 |
+
demo.queue().launch(debug=True)
|
497 |
+
|
498 |
+
|
499 |
+
|
500 |
+
|
501 |
+
|
502 |
+
|
503 |
+
|
504 |
+
|
505 |
+
|
506 |
+
"""
|
507 |
|
508 |
+
description = <strong>Information:</strong> Hier wird ein <strong>Large Language Model (LLM)</strong> mit
|
509 |
<strong>Retrieval Augmented Generation (RAG)</strong> auf <strong>externen Daten</strong> verwendet.\n\n
|
510 |
+
|
511 |
+
css = .toast-wrap { display: none !important }
|
512 |
examples=[['Was ist ChtGPT-4?'],['schreibe ein Python Programm, dass die GPT-4 API aufruft.']]
|
513 |
|
514 |
additional_inputs = [
|
|
|
540 |
#chatbot_stream.like(vote, None, None)
|
541 |
chat_interface_stream.queue().launch()
|
542 |
|
543 |
+
"""
|