Spaces:
Runtime error
Runtime error
import os | |
os.system("pip install git+https://github.com/wilson1yan/VideoGPT.git") | |
import torch | |
from torchvision.io import read_video, read_video_timestamps | |
from videogpt import download, load_vqvae | |
from videogpt.data import preprocess | |
import imageio | |
import gradio as gr | |
from moviepy.editor import * | |
device = torch.device('cpu') | |
vqvae = load_vqvae('kinetics_stride2x4x4', device=device).to(device) | |
resolution, sequence_length = vqvae.args.resolution, 16 | |
def vgpt(invid): | |
try: | |
os.remove("output.mp4") | |
except FileNotFoundError: | |
pass | |
clip = VideoFileClip(invid) | |
rate = clip.fps | |
pts = read_video_timestamps(invid, pts_unit='sec')[0] | |
video = read_video(invid, pts_unit='sec', start_pts=pts[0], end_pts=pts[sequence_length - 1])[0] | |
video = preprocess(video, resolution, sequence_length).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
encodings = vqvae.encode(video) | |
video_recon = vqvae.decode(encodings) | |
video_recon = torch.clamp(video_recon, -0.5, 0.5) | |
videos = video_recon[0].permute(1, 2, 3, 0) # CTHW -> THWC | |
videos = ((videos + 0.5) * 255).cpu().numpy().astype('uint8') | |
imageio.mimwrite('output.mp4', videos, fps=int(rate)) | |
return './output.mp4' | |
inputs = gr.inputs.Video(label="Input Video") | |
outputs = gr.outputs.Video(label="Output Video") | |
title = "VideoGPT" | |
description = "Gradio demo for VideoGPT: Video Generation using VQ-VAE and Transformers for video reconstruction. To use it, simply upload your video, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.10157' target='_blank'>VideoGPT: Video Generation using VQ-VAE and Transformers</a> | <a href='https://github.com/wilson1yan/VideoGPT' target='_blank'>Github Repo</a></p>" | |
examples = [ | |
['bear.mp4'], | |
['breakdance.mp4'] | |
] | |
gr.Interface(vgpt, inputs, outputs, title=title, description=description, article=article, examples=examples,enable_queue=True).launch(debug=True) |