import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext from llama_index.llms import HuggingFaceLLM documents = SimpleDirectoryReader("./data").load_data() from llama_index.prompts.prompts import SimpleInputPrompt system_prompt = "You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided." # This will wrap the default prompts that are internal to llama-index query_wrapper_prompt = SimpleInputPrompt("<|USER|>{query_str}<|ASSISTANT|>") import torch llm = HuggingFaceLLM( context_window=4096, max_new_tokens=256, generate_kwargs={"temperature": 0.0, "do_sample": False}, system_prompt=system_prompt, query_wrapper_prompt=query_wrapper_prompt, tokenizer_name="NousResearch/Llama-2-7b-hf", model_name="NousResearch/Llama-2-7b-hf", device_map="auto", # uncomment this if using CUDA to reduce memory usage # model_kwargs={"torch_dtype": torch.float16 , "load_in_8bit":False} ) from langchain.embeddings.huggingface import HuggingFaceEmbeddings from llama_index import LangchainEmbedding, ServiceContext embed_model = LangchainEmbedding( HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") ) service_context = ServiceContext.from_defaults( chunk_size=1024, llm=llm, embed_model=embed_model ) index = VectorStoreIndex.from_documents(documents, service_context=service_context) #query_engine = index.as_query_engine() #response = query_engine.query("what is the name of this document?") #print(response) import gradio as gr def random_response(message, history): query_engine = index.as_query_engine() response = query_engine.query("according to the document provided,"+message) print(response) return str(response) demo = gr.ChatInterface(random_response) if __name__ == "__main__": demo.queue().launch(debug=True)