AshwinSankar's picture
fix typo
60a97c6
import io
import os
import math
from queue import Queue
from threading import Thread
from typing import Optional
import numpy as np
import spaces
import gradio as gr
import torch
import nltk
from parler_tts import ParlerTTSForConditionalGeneration
from pydub import AudioSegment
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
nltk.download('punkt_tab')
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32
repo_id = "ai4bharat/indic-parler-tts-pretrained"
finetuned_repo_id = "ai4bharat/indic-parler-tts"
model = ParlerTTSForConditionalGeneration.from_pretrained(
repo_id, attn_implementation="eager", torch_dtype=torch_dtype,
).to(device)
finetuned_model = ParlerTTSForConditionalGeneration.from_pretrained(
finetuned_repo_id, attn_implementation="eager", torch_dtype=torch_dtype,
).to(device)
tokenizer = AutoTokenizer.from_pretrained(repo_id)
description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42
default_text = "Please surprise me and speak in whatever voice you enjoy."
examples = [
[
"मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.",
"Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.",
3.0
],
[
"ಉದ್ಯಾನದಲ್ಲಿ ಮಕ್ಕಳ ಆಟವಾಡುತ್ತಿದ್ದಾರೆ ಮತ್ತು ಪಕ್ಷಿಗಳು ಚಿಲಿಪಿಲಿ ಮಾಡುತ್ತಿವೆ.",
"Suresh speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
3.0
],
[
"বাচ্চারা বাগানে খেলছে আর পাখি কিচিরমিচির করছে।",
"Aditi speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
3.0
],
[
"పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.",
"Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
3.0
],
[
"పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.",
"Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
3.0
],
[
"This is the best time of my life, Bartley,' she said happily",
"A male speaker with a low-pitched voice speaks with a British accent at a fast pace in a small, confined space with very clear audio and an animated tone.",
3.0
],
[
"Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.",
"A female speaker with a slightly low-pitched, quite monotone voice speaks with an American accent at a slightly faster-than-average pace in a confined space with very clear audio.",
3.0
],
[
"बगीचे में बच्चे खेल रहे हैं और पक्षी चहचहा रहे हैं।",
"Rohit speaks with a slightly high-pitched voice delivering his words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.",
3.0
],
[
"കുട്ടികൾ പൂന്തോട്ടത്തിൽ കളിക്കുന്നു, പക്ഷികൾ ചിലയ്ക്കുന്നു.",
"Anjali speaks with a low-pitched voice delivering her words at a fast pace and an animated tone, in a very spacious environment, accompanied by noticeable background noise.",
3.0
],
[
"குழந்தைகள் தோட்டத்தில் விளையாடுகிறார்கள், பறவைகள் கிண்டல் செய்கின்றன.",
"Jaya speaks with a slightly low-pitched, quite monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.",
3.0
]
]
finetuned_examples = [
[
"मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.",
"Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.",
3.0
],
[
"ಉದ್ಯಾನದಲ್ಲಿ ಮಕ್ಕಳ ಆಟವಾಡುತ್ತಿದ್ದಾರೆ ಮತ್ತು ಪಕ್ಷಿಗಳು ಚಿಲಿಪಿಲಿ ಮಾಡುತ್ತಿವೆ.",
"Suresh speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
3.0
],
[
"বাচ্চারা বাগানে খেলছে আর পাখি কিচিরমিচির করছে।",
"Aditi speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.",
3.0
],
[
"పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.",
"Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
3.0
],
[
"పిల్లలు తోటలో ఆడుకుంటున్నారు, పక్షుల కిలకిలరావాలు.",
"Prakash speaks slowly in a low-pitched, calm voice, with a neutral tone, perfect for narration. The recording is very high quality with no background noise.",
3.0
],
[
"This is the best time of my life, Bartley,' she said happily",
"A male speaker with a low-pitched voice speaks with a British accent at a fast pace in a small, confined space with very clear audio and an animated tone.",
3.0
],
[
"Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.",
"A female speaker with a slightly low-pitched, quite monotone voice speaks with an American accent at a slightly faster-than-average pace in a confined space with very clear audio.",
3.0
],
[
"बगीचे में बच्चे खेल रहे हैं और पक्षी चहचहा रहे हैं।",
"Rohit speaks with a slightly high-pitched voice delivering his words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.",
3.0
],
[
"കുട്ടികൾ പൂന്തോട്ടത്തിൽ കളിക്കുന്നു, പക്ഷികൾ ചിലയ്ക്കുന്നു.",
"Anjali speaks with a low-pitched voice delivering her words at a fast pace and an animated tone, in a very spacious environment, accompanied by noticeable background noise.",
3.0
],
[
"குழந்தைகள் தோட்டத்தில் விளையாடுகிறார்கள், பறவைகள் கிண்டல் செய்கின்றன.",
"Jaya speaks with a slightly low-pitched, quite monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.",
3.0
]
]
def numpy_to_mp3(audio_array, sampling_rate):
# Normalize audio_array if it's floating-point
if np.issubdtype(audio_array.dtype, np.floating):
max_val = np.max(np.abs(audio_array))
audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range
audio_array = audio_array.astype(np.int16)
# Create an audio segment from the numpy array
audio_segment = AudioSegment(
audio_array.tobytes(),
frame_rate=sampling_rate,
sample_width=audio_array.dtype.itemsize,
channels=1
)
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality
mp3_io = io.BytesIO()
audio_segment.export(mp3_io, format="mp3", bitrate="320k")
# Get the MP3 bytes
mp3_bytes = mp3_io.getvalue()
mp3_io.close()
return mp3_bytes
sampling_rate = model.audio_encoder.config.sampling_rate
frame_rate = model.audio_encoder.config.frame_rate
@spaces.GPU
def generate_base(text, description,):
# Initialize variables
chunk_size = 25 # Process max 25 words or a sentence at a time
# Tokenize the full text and description
inputs = description_tokenizer(description, return_tensors="pt").to(device)
sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences
curr_sentence = ""
chunks = []
for sentence in sentences_text:
candidate = " ".join([curr_sentence, sentence])
if len(candidate.split()) >= chunk_size:
chunks.append(curr_sentence)
curr_sentence = sentence
else:
curr_sentence = candidate
if curr_sentence != "":
chunks.append(curr_sentence)
print(chunks)
all_audio = []
# Process each chunk
for chunk in chunks:
# Tokenize the chunk
prompt = tokenizer(chunk, return_tensors="pt").to(device)
# Generate audio for the chunk
generation = model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
prompt_input_ids=prompt.input_ids,
prompt_attention_mask=prompt.attention_mask,
do_sample=True,
return_dict_in_generate=True
)
# Extract audio from generation
if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'):
audio = generation.sequences[0, :generation.audios_length[0]]
audio_np = audio.to(torch.float32).cpu().numpy().squeeze()
if len(audio_np.shape) > 1:
audio_np = audio_np.flatten()
all_audio.append(audio_np)
# Combine all audio chunks
combined_audio = np.concatenate(all_audio)
# Convert to expected format and yield
print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds")
yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate)
@spaces.GPU
def generate_finetuned(text, description):
# Initialize variables
chunk_size = 25 # Process max 25 words or a sentence at a time
# Tokenize the full text and description
inputs = description_tokenizer(description, return_tensors="pt").to(device)
sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences
curr_sentence = ""
chunks = []
for sentence in sentences_text:
candidate = " ".join([curr_sentence, sentence])
if len(candidate.split()) >= chunk_size:
chunks.append(curr_sentence)
curr_sentence = sentence
else:
curr_sentence = candidate
if curr_sentence != "":
chunks.append(curr_sentence)
print(chunks)
all_audio = []
# Process each chunk
for chunk in chunks:
# Tokenize the chunk
prompt = tokenizer(chunk, return_tensors="pt").to(device)
# Generate audio for the chunk
generation = finetuned_model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
prompt_input_ids=prompt.input_ids,
prompt_attention_mask=prompt.attention_mask,
do_sample=True,
return_dict_in_generate=True
)
# Extract audio from generation
if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'):
audio = generation.sequences[0, :generation.audios_length[0]]
audio_np = audio.to(torch.float32).cpu().numpy().squeeze()
if len(audio_np.shape) > 1:
audio_np = audio_np.flatten()
all_audio.append(audio_np)
# Combine all audio chunks
combined_audio = np.concatenate(all_audio)
# Convert to expected format and yield
print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds")
yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate)
css = """
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
width: 13rem;
margin-top: 10px;
margin-left: auto;
flex: unset !important;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor: pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.25rem !important;
padding-bottom: 0.25rem !important;
right:0;
}
#share-btn * {
all: unset !important;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
with gr.Blocks(css=css) as block:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
Parler-TTS 🗣️
</h1>
</div>
</div>
"""
)
gr.HTML(
f"""
<p><a href="https://github.com/huggingface/Parler-TTS">ParlerTTS</a> is a training and inference library for high-quality text-to-speech (TTS) models. This demonstration highlights the flexibility of the IndicParlerTTS model, which generates natural, expressive speech for over 22 Indian languages, using a simple text prompt to control features like speaker style, tone, pitch, pace, and more.</p>
<p>Tips for effective usage:
<ul>
<li>Use detailed captions to describe the speaker and desired characteristics (e.g., "Aditi speaks in a slightly expressive tone, with clear audio quality and a moderate pace.").</li>
<li>For best results, reference specific named speakers provided in the model card on the <a href="https://huggingface.co./ai4bharat/indic-parler-tts#%F0%9F%8E%AF-using-a-specific-speaker">model page</a>.</li>
<li>Include terms like <b>"very clear audio"</b> or <b>"slightly noisy audio"</b> to control the audio quality and background ambiance.</li>
<li>Punctuation can be used to shape prosody (e.g., commas add pauses for natural phrasing).</li>
<li>If unsure about what caption to use, you can start with: <b>"The speaker speaks naturally. The recording is very high quality with no background noise."</b></li>
</ul>
</p>
"""
)
with gr.Tab("Finetuned"):
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=2, value=finetuned_examples[0][0], elem_id="input_text")
description = gr.Textbox(label="Description", lines=2, value=finetuned_examples[0][1], elem_id="input_description")
run_button = gr.Button("Generate Audio", variant="primary")
with gr.Column():
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True)
inputs = [input_text, description]
outputs = [audio_out]
gr.Examples(examples=finetuned_examples, fn=generate_finetuned, inputs=inputs, outputs=outputs, cache_examples=False)
run_button.click(fn=generate_finetuned, inputs=inputs, outputs=outputs, queue=True)
with gr.Tab("Pretrained"):
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
run_button = gr.Button("Generate Audio", variant="primary")
with gr.Column():
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True)
inputs = [input_text, description]
outputs = [audio_out]
gr.Examples(examples=examples, fn=generate_base, inputs=inputs, outputs=outputs, cache_examples=False)
run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True)
gr.HTML(
"""
If you'd like to learn more about how the model was trained or explore fine-tuning it yourself, visit the <a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> repository on GitHub. The Parler-TTS codebase and associated checkpoints are licensed under the <a href="https://github.com/huggingface/parler-tts/blob/main/LICENSE">Apache 2.0 license</a>.</p>
"""
)
block.queue()
block.launch(share=True)