Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
#!/usr/bin/env python3 | |
import yaml | |
from opentelemetry.sdk.trace import TracerProvider | |
from openinference.instrumentation.smolagents import SmolagentsInstrumentor | |
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter | |
from opentelemetry.sdk.trace.export import SimpleSpanProcessor | |
endpoint = "http://0.0.0.0:6006/v1/traces" | |
trace_provider = TracerProvider() | |
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint))) | |
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider) | |
import argparse | |
import logging | |
import os | |
import time | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from pathlib import Path | |
import datasets | |
import pandas as pd | |
from dabstep_benchmark.utils import evaluate | |
from smolagents.utils import console | |
from utils import TqdmLoggingHandler | |
from constants import REPO_ID | |
from tqdm import tqdm | |
from prompts import ( | |
reasoning_llm_system_prompt, | |
reasoning_llm_task_prompt, | |
chat_llm_task_prompt, | |
chat_llm_system_prompt | |
) | |
from utils import ( | |
is_reasoning_llm, | |
create_code_agent_with_chat_llm, | |
create_code_agent_with_reasoning_llm, | |
get_tasks_to_run, | |
append_answer, | |
append_console_output, | |
download_context | |
) | |
logging.basicConfig(level=logging.WARNING, handlers=[TqdmLoggingHandler()]) | |
logger = logging.getLogger(__name__) | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--concurrency", type=int, default=4) | |
parser.add_argument("--model-id", type=str, default="openai/o3-mini") | |
parser.add_argument("--experiment", type=str, default=None) | |
parser.add_argument("--max-tasks", type=int, default=-1) | |
parser.add_argument("--max-steps", type=int, default=10) | |
parser.add_argument("--tasks-ids", type=int, nargs="+", default=None) | |
parser.add_argument("--api-base", type=str, default=None) | |
parser.add_argument("--api-key", type=str, default=None) | |
parser.add_argument("--split", type=str, default="default", choices=["default", "dev"]) | |
parser.add_argument("--timestamp", type=str, default=None) | |
return parser.parse_args() | |
def run_single_task( | |
task: dict, | |
model_id: str, | |
api_base: str, | |
api_key: str, | |
ctx_path: str, | |
base_filename: Path, | |
is_dev_data: bool, | |
max_steps: int | |
): | |
if is_reasoning_llm(model_id): | |
prompt = reasoning_llm_task_prompt.format( | |
question=task["question"], | |
guidelines=task["guidelines"] | |
) | |
agent = create_code_agent_with_reasoning_llm(model_id, api_base, api_key, max_steps, ctx_path) | |
else: | |
prompt = chat_llm_task_prompt.format( | |
ctx_path=ctx_path, | |
question=task["question"], | |
guidelines=task["guidelines"] | |
) | |
agent = create_code_agent_with_chat_llm(model_id, api_base, api_key, max_steps) | |
with console.capture() as capture: | |
answer = agent.run(prompt) | |
logger.warning(f"Task id: {task['task_id']}\tQuestion: {task['question']} Answer: {answer}\n{'=' * 50}") | |
answer_dict = {"task_id": str(task["task_id"]), "agent_answer": str(answer)} | |
answers_file = base_filename / "answers.jsonl" | |
logs_file = base_filename / "logs.txt" | |
if is_dev_data: | |
scores = evaluate(agent_answers=pd.DataFrame([answer_dict]), tasks_with_gt=pd.DataFrame([task])) | |
entry = {**answer_dict, "answer": task["answer"], "score": scores[0]["score"], "level": scores[0]["level"]} | |
append_answer(entry, answers_file) | |
else: | |
append_answer(answer_dict, answers_file) | |
append_console_output(capture.get(), logs_file) | |
def main(): | |
args = parse_args() | |
logger.warning(f"Starting run with arguments: {args}") | |
ctx_path = download_context(str(Path().resolve())) | |
runs_dir = Path().resolve() / "runs" | |
runs_dir.mkdir(parents=True, exist_ok=True) | |
timestamp = time.time() if not args.timestamp else args.timestamp | |
base_filename = runs_dir / f"{args.model_id.replace('/', '_').replace('.', '_')}/{args.split}/{int(timestamp)}" | |
# save config | |
os.makedirs(base_filename, exist_ok=True) | |
with open(base_filename / "config.yaml", "w", encoding="utf-8") as f: | |
if is_reasoning_llm(args.model_id): | |
args.system_prompt = reasoning_llm_system_prompt | |
else: | |
args.system_prompt = chat_llm_system_prompt | |
args_dict = vars(args) | |
yaml.dump(args_dict, f, default_flow_style=False) | |
# Load dataset with user-chosen split | |
data = datasets.load_dataset(REPO_ID, name="tasks", split=args.split, download_mode='force_redownload') | |
if args.max_tasks >= 0 and args.tasks_ids is not None: | |
logger.error(f"Can not provide {args.max_tasks=} and {args.tasks_ids=} at the same time") | |
total = len(data) if args.max_tasks < 0 else min(len(data), args.max_tasks) | |
tasks_to_run = get_tasks_to_run(data, total, base_filename, args.tasks_ids) | |
with ThreadPoolExecutor(max_workers=args.concurrency) as exe: | |
futures = [ | |
exe.submit( | |
run_single_task, | |
task, | |
args.model_id, | |
args.api_base, | |
args.api_key, | |
ctx_path, | |
base_filename, | |
(args.split == "dev"), | |
args.max_steps | |
) | |
for task in tasks_to_run | |
] | |
for f in tqdm(as_completed(futures), total=len(tasks_to_run), desc="Processing tasks"): | |
f.result() | |
logger.warning("All tasks processed.") | |
if __name__ == "__main__": | |
main() |