Spaces:
Runtime error
Runtime error
Upload 9 files
Browse files- helpers/common.py +0 -0
- helpers/entity_extraction_helpers.py +121 -0
- helpers/pii.py +0 -0
- requirements.txt +12 -0
- s3_uiapp.py +53 -0
- services/mongo_service.py +33 -0
- services/ocr_service.py +87 -0
- services/openai_service.py +44 -0
- services/pii_service.py +309 -0
helpers/common.py
ADDED
File without changes
|
helpers/entity_extraction_helpers.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from constants import DOCUMENT_COLLECTION
|
2 |
+
from openai_constants import ENTITY_EXTRACTION_PROMPT, ENTITY_EXTRACTION_FUNCTION, GPT35_PRICING
|
3 |
+
|
4 |
+
|
5 |
+
def extract_all_documents(openai_instance, chunks):
|
6 |
+
all_entities = {}
|
7 |
+
all_usage = {}
|
8 |
+
total_prompt_tokens = 0
|
9 |
+
total_completion_tokens = 0
|
10 |
+
print(f"Number of chunks to process :: {len(chunks)}")
|
11 |
+
for chunk_idx, chunk in enumerate(chunks):
|
12 |
+
print(f"Sending request to OpenAI for {chunk_idx}")
|
13 |
+
openai_entities_out = openai_instance.generate_response(ENTITY_EXTRACTION_PROMPT, chunk, ENTITY_EXTRACTION_FUNCTION)
|
14 |
+
print("OpenAI out received")
|
15 |
+
print(openai_entities_out['function_output'])
|
16 |
+
#for ent in openai_entities_out['function_output'].items():
|
17 |
+
for key, val in openai_entities_out['function_output'].items():
|
18 |
+
print(key, val)
|
19 |
+
if key in all_entities:
|
20 |
+
if isinstance(val, list):
|
21 |
+
all_entities[key].extend(val) # Extend the existing list with the new list
|
22 |
+
else:
|
23 |
+
all_entities[key].append(val) # Append the value to the existing list
|
24 |
+
else:
|
25 |
+
if isinstance(val, list):
|
26 |
+
all_entities[key] = val # Initialize the key with the list
|
27 |
+
else:
|
28 |
+
all_entities[key] = [val]
|
29 |
+
|
30 |
+
if 'prompt_tokens' in openai_entities_out['usage']:
|
31 |
+
total_prompt_tokens += openai_entities_out['usage']['prompt_tokens']
|
32 |
+
if 'completion_tokens' in openai_entities_out['usage']:
|
33 |
+
total_completion_tokens += openai_entities_out['usage']['completion_tokens']
|
34 |
+
|
35 |
+
all_usage = {
|
36 |
+
'prompt_tokens':total_prompt_tokens,
|
37 |
+
'completion_tokens':total_completion_tokens,
|
38 |
+
'output_pricing': total_completion_tokens/1000 * GPT35_PRICING['input'],
|
39 |
+
'input_pricing':total_prompt_tokens/1000 * GPT35_PRICING['output']
|
40 |
+
}
|
41 |
+
return all_entities, all_usage
|
42 |
+
|
43 |
+
def process_insurance_document(pii_instance, mongo_instance, openai_instance, ocr_instance,
|
44 |
+
document_path, document_id):
|
45 |
+
print("---- \nInside Process insurance document function")
|
46 |
+
## save file to S3
|
47 |
+
document_s3_url = ""
|
48 |
+
|
49 |
+
## OCR
|
50 |
+
try:
|
51 |
+
document_text = ocr_instance.extract_text_from_document(document_path)
|
52 |
+
ocr_status = "Completed"
|
53 |
+
process_status = "OCR Completed"
|
54 |
+
print(f"OCR complete")
|
55 |
+
except Exception as ex:
|
56 |
+
document_text = ""
|
57 |
+
ocr_status = ex
|
58 |
+
process_status = f"OCR Failed. {ex}"
|
59 |
+
print(process_status)
|
60 |
+
|
61 |
+
## save ocr file to S3, add document S3 url
|
62 |
+
ocr_document_s3_url = ""
|
63 |
+
|
64 |
+
## update ocr_status in db
|
65 |
+
#mongo_instance.update(DOCUMENT_COLLECTION,
|
66 |
+
# {'document_id':document_id},
|
67 |
+
# {'set':{'ocr_status':ocr_status, 'document_s3_url':document_s3_url,
|
68 |
+
# 'ocr_document_s3_url':ocr_document_s3_url, 'process_status':process_status}})
|
69 |
+
print(f"OCR status updated in db")
|
70 |
+
## PII entity extraction and masking
|
71 |
+
pii_entities = pii_instance.identify(document_text)
|
72 |
+
print(f"pii entiites are :: {pii_entities}")
|
73 |
+
pii_entities = pii_instance.add_mask(pii_entities)
|
74 |
+
print(f"\npii_entities after adding mask :: {pii_entities}")
|
75 |
+
masked_text = pii_instance.anonymize(pii_entities, document_text)
|
76 |
+
print(f"\nPII anonumized text is :: {masked_text}")
|
77 |
+
print(f"\nPII complete")
|
78 |
+
|
79 |
+
## Openai extraction
|
80 |
+
chunks = ocr_instance.chunk_document(masked_text)
|
81 |
+
openai_entities, all_usage = extract_all_documents(openai_instance, chunks)
|
82 |
+
entity_extraction_status = 'Completed'
|
83 |
+
process_status = 'Document term extraction completed'
|
84 |
+
|
85 |
+
"""try:
|
86 |
+
openai_entities, all_usage = extract_all_documents(openai_instance, chunks)
|
87 |
+
entity_extraction_status = 'Completed'
|
88 |
+
process_status = 'Document term extraction completed'
|
89 |
+
except Exception as ex:
|
90 |
+
openai_entities = {}
|
91 |
+
all_usage = {}
|
92 |
+
entity_extraction_status = ex
|
93 |
+
process_status = f"Document term extraction failed. {ex}"
|
94 |
+
"""
|
95 |
+
|
96 |
+
#openai_entities_out = {
|
97 |
+
# 'status':"Success",
|
98 |
+
# 'function_output':{},
|
99 |
+
# 'usage':{}
|
100 |
+
#}
|
101 |
+
|
102 |
+
print(f"openai_entities are :: {openai_entities}")
|
103 |
+
print(f"Request to OpenAI complete")
|
104 |
+
print("----------- \nProcessing complete\n ")
|
105 |
+
|
106 |
+
## Unmask PII entities in openai entities
|
107 |
+
|
108 |
+
|
109 |
+
## update entity extraction status in db
|
110 |
+
#mongo_instance.update(DOCUMENT_COLLECTION,
|
111 |
+
# {'document_id':document_id},
|
112 |
+
# {'set':{'entity_extraction_status':entity_extraction_status,
|
113 |
+
# 'entities':openai_entities, 'process_status':process_status}})
|
114 |
+
#print(f"Entities updated in DB")
|
115 |
+
|
116 |
+
|
117 |
+
out = {
|
118 |
+
"entities":openai_entities,
|
119 |
+
"masked_text":masked_text
|
120 |
+
}
|
121 |
+
return out
|
helpers/pii.py
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
fastapi
|
3 |
+
pydantic
|
4 |
+
scipy==1.10.1
|
5 |
+
flair
|
6 |
+
presidio-analyzer
|
7 |
+
presidio-anonymizer
|
8 |
+
openai==0.28.1
|
9 |
+
pytesseract
|
10 |
+
pdf2image
|
11 |
+
PyPDF2
|
12 |
+
python-docx
|
s3_uiapp.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import uuid
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
from helpers.entity_extraction_helpers import process_insurance_document
|
7 |
+
from services.pii_service import PIIService
|
8 |
+
from services.openai_service import OpenAIService
|
9 |
+
from services.mongo_service import MongoService
|
10 |
+
from services.ocr_service import OCRService
|
11 |
+
|
12 |
+
|
13 |
+
def init_session():
|
14 |
+
print("------------------ Initializing")
|
15 |
+
if 'a' not in st.session_state:
|
16 |
+
st.session_state['pii_instance'] = PIIService()
|
17 |
+
print("PII service initialized")
|
18 |
+
time.sleep(2)
|
19 |
+
st.session_state['openai_instance'] = OpenAIService(st.secrets["OPENAI_KEY"],
|
20 |
+
st.secrets["OPENAI_AZURE_ENDPOINT"],
|
21 |
+
st.secrets["OPENAI_API_VERSION"],
|
22 |
+
st.secrets["DEPLOYMENT_NAME"])
|
23 |
+
print("OpenAI service initialized")
|
24 |
+
time.sleep(2)
|
25 |
+
st.session_state['ocr_instance'] = OCRService()
|
26 |
+
print("OCR service initialized")
|
27 |
+
st.session_state.a = 1
|
28 |
+
print("-----------------------------")
|
29 |
+
|
30 |
+
st.header('', divider='rainbow')
|
31 |
+
st.title("Data extraction")
|
32 |
+
st.header('', divider='rainbow')
|
33 |
+
|
34 |
+
init_session()
|
35 |
+
|
36 |
+
uploaded_doc = st.file_uploader("Upload an insurance document", type=["pdf"])
|
37 |
+
|
38 |
+
if uploaded_doc is not None:
|
39 |
+
|
40 |
+
with open(uploaded_doc.name,"wb") as f:
|
41 |
+
f.write(uploaded_doc.getbuffer())
|
42 |
+
|
43 |
+
document_id = str(uuid.uuid4())
|
44 |
+
print(f"File uploaded :: {uploaded_doc.name} :: {document_id}")
|
45 |
+
|
46 |
+
process_out = process_insurance_document(st.session_state['pii_instance'], "", st.session_state['openai_instance'],
|
47 |
+
st.session_state['ocr_instance'] , uploaded_doc.name, document_id)
|
48 |
+
|
49 |
+
st.header('Extracted entities !! ', divider='rainbow')
|
50 |
+
st.write(process_out['entities'])
|
51 |
+
st.header('', divider='rainbow')
|
52 |
+
|
53 |
+
### TO RUN :: streamlit run ui_app.py
|
services/mongo_service.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pymongo import MongoClient
|
2 |
+
from pydantic import BaseModel, HttpUrl
|
3 |
+
from datetime import datetime
|
4 |
+
from typing import Optional, List, Dict, Union
|
5 |
+
|
6 |
+
class MongoService:
|
7 |
+
def __init__(self, mongo_url:str, database:str):
|
8 |
+
self.mongo_url = mongo_url
|
9 |
+
self.mongo_client = MongoClient(self.mongo_url)
|
10 |
+
self.mongo_database = self.mongo_client[database]
|
11 |
+
|
12 |
+
def insert(self, collection:str, data:Dict):
|
13 |
+
inserted = self.mongo_database[collection].insert_one(data)
|
14 |
+
return
|
15 |
+
|
16 |
+
def get(self, collection:str, filter:Dict, fields_to_retrieve:List=[]):
|
17 |
+
fields = {}
|
18 |
+
if fields_to_retrieve != []:
|
19 |
+
for field in fields_to_retrieve:
|
20 |
+
fields[field] = 1
|
21 |
+
retrieved_data = list(self.mongo_database[collection].find(filter,fields))
|
22 |
+
return retrieved_data
|
23 |
+
|
24 |
+
def update(self, collection:str, filter:Dict, update_value:Dict, many=False):
|
25 |
+
#myquery = { "address": { "$regex": "^S" } }
|
26 |
+
#newvalues = { "$set": { "name": "Minnie" } }
|
27 |
+
|
28 |
+
if many == True:
|
29 |
+
updated = self.mongo_database[collection].update_many(filter, update_value)
|
30 |
+
else:
|
31 |
+
updated = self.mongo_database[collection].update_one(filter, update_value)
|
32 |
+
|
33 |
+
return
|
services/ocr_service.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import docx
|
4 |
+
import pytesseract
|
5 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
6 |
+
from PyPDF2 import PdfReader
|
7 |
+
from pdf2image import convert_from_path
|
8 |
+
|
9 |
+
|
10 |
+
class OCRService:
|
11 |
+
def __init__(self):
|
12 |
+
return
|
13 |
+
|
14 |
+
def extract_ocrless_pdf(self, filepath):
|
15 |
+
reader = PdfReader(filepath)
|
16 |
+
extracted_text = ""
|
17 |
+
for page in reader.pages:
|
18 |
+
text = page.extract_text()
|
19 |
+
extracted_text += " "
|
20 |
+
extracted_text += text
|
21 |
+
|
22 |
+
return extracted_text
|
23 |
+
|
24 |
+
def extract_text_from_pdf(self, filepath):
|
25 |
+
images = convert_from_path(filepath, thread_count=4)
|
26 |
+
full_text = []
|
27 |
+
#config = (r"--oem 2 --psm 7")
|
28 |
+
for image_idx, image in enumerate(images):
|
29 |
+
text = pytesseract.image_to_string(image)
|
30 |
+
#text = pytesseract.image_to_string(image, config=config)
|
31 |
+
full_text.append(text)
|
32 |
+
return full_text
|
33 |
+
|
34 |
+
def extract_text_from_document(self, filepath):
|
35 |
+
file_ext = os.path.splitext(filepath)[-1]
|
36 |
+
if file_ext in [".pdf"]:
|
37 |
+
text_to_process = self.extract_text_from_pdf(filepath)
|
38 |
+
text_joined = " ".join(text_to_process)
|
39 |
+
#with open(f"{os.path.splitext(filepath)[0]}.txt", "w") as file:
|
40 |
+
# file.writelines(text_to_process)
|
41 |
+
elif file_ext in [".doc", ".DOC", ".docx", ".DOCX"]:
|
42 |
+
doc_content = docx.Document(filepath)
|
43 |
+
text_to_process = [i.text for i in doc_content.paragraphs]
|
44 |
+
text_joined = " \n ".join(text_to_process)
|
45 |
+
#with open(f"{os.path.splitext(filepath)[0]}.txt", "w") as file:
|
46 |
+
# file.write(text_joined)
|
47 |
+
elif file_ext in [".txt"]:
|
48 |
+
file = open(f"{os.path.splitext(filepath)[0]}.txt", encoding="utf8")
|
49 |
+
text_joined = file.read()
|
50 |
+
|
51 |
+
return text_joined
|
52 |
+
|
53 |
+
def preprocess_document(self, document):
|
54 |
+
document = document.replace(r'\n+', "\n")
|
55 |
+
#document = re.sub(r"\s+", " ", document)
|
56 |
+
document = re.sub("“", r"\"", document)
|
57 |
+
document = re.sub("”", r"\"", document)
|
58 |
+
document = re.sub(r"\\\"", "\"", document)
|
59 |
+
|
60 |
+
return document
|
61 |
+
|
62 |
+
def chunk_document(self, text, k=1500):
|
63 |
+
sentences = sent_tokenize(text)
|
64 |
+
words = word_tokenize(text)
|
65 |
+
|
66 |
+
chunks = []
|
67 |
+
current_chunk = []
|
68 |
+
current_word_count = 0
|
69 |
+
|
70 |
+
for sentence in sentences:
|
71 |
+
sentence_words = word_tokenize(sentence)
|
72 |
+
if current_word_count + len(sentence_words) <= k:
|
73 |
+
current_chunk.append(sentence)
|
74 |
+
current_word_count += len(sentence_words)
|
75 |
+
else:
|
76 |
+
chunks.append(" ".join(current_chunk))
|
77 |
+
current_chunk = [sentence]
|
78 |
+
current_word_count = len(sentence_words)
|
79 |
+
|
80 |
+
if current_chunk:
|
81 |
+
chunks.append(" ".join(current_chunk))
|
82 |
+
|
83 |
+
for id, chunk in enumerate(chunks):
|
84 |
+
if len(chunk.split()) < 2:
|
85 |
+
del chunks[id]
|
86 |
+
|
87 |
+
return chunks
|
services/openai_service.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import openai
|
3 |
+
|
4 |
+
|
5 |
+
class OpenAIService:
|
6 |
+
def __init__(self, api_key, api_endpoint, api_version, deployment_name):
|
7 |
+
openai.api_key = api_key
|
8 |
+
openai.api_base = api_endpoint
|
9 |
+
openai.api_type = "azure"
|
10 |
+
openai.api_version = api_version
|
11 |
+
self.openai_deployment_name = deployment_name
|
12 |
+
|
13 |
+
def generate_response(self, system_prompt, user_prompt, openai_function):
|
14 |
+
|
15 |
+
try:
|
16 |
+
response = openai.ChatCompletion.create(engine=self.openai_deployment_name,
|
17 |
+
messages=[
|
18 |
+
{"role": "system", "content": system_prompt},
|
19 |
+
{"role": "user", "content": user_prompt},
|
20 |
+
],
|
21 |
+
functions = openai_function,
|
22 |
+
function_call = {"name": openai_function[0]['name']}
|
23 |
+
)
|
24 |
+
|
25 |
+
openai_output = response["choices"]
|
26 |
+
usage = response["usage"].to_dict()
|
27 |
+
print(response)
|
28 |
+
function_output = json.loads(openai_output[0].message.function_call.arguments, strict=False)
|
29 |
+
print(function_output)
|
30 |
+
openai_out = {
|
31 |
+
'function_output':function_output,
|
32 |
+
'usage':usage,
|
33 |
+
'status':'Success'
|
34 |
+
}
|
35 |
+
return openai_out
|
36 |
+
|
37 |
+
except Exception as ex:
|
38 |
+
print(f"Openai generate response exceptin ::: {ex}")
|
39 |
+
openai_out = {
|
40 |
+
'function_output':{},
|
41 |
+
'usage':{},
|
42 |
+
'status':ex
|
43 |
+
}
|
44 |
+
return openai_out
|
services/pii_service.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pprint import pprint
|
2 |
+
import json
|
3 |
+
|
4 |
+
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
5 |
+
from presidio_analyzer.nlp_engine import NlpEngineProvider, NlpArtifacts
|
6 |
+
from presidio_analyzer import PatternRecognizer
|
7 |
+
from presidio_analyzer import Pattern, PatternRecognizer
|
8 |
+
from presidio_analyzer.predefined_recognizers import SpacyRecognizer
|
9 |
+
from presidio_analyzer.predefined_recognizers import IbanRecognizer, EmailRecognizer, IpRecognizer,\
|
10 |
+
EmailRecognizer, PhoneRecognizer, UrlRecognizer, DateRecognizer
|
11 |
+
|
12 |
+
from presidio_anonymizer import AnonymizerEngine
|
13 |
+
from presidio_anonymizer.entities import OperatorConfig
|
14 |
+
|
15 |
+
import logging
|
16 |
+
from typing import Optional, List, Tuple, Set
|
17 |
+
from presidio_analyzer import (
|
18 |
+
RecognizerResult,
|
19 |
+
EntityRecognizer,
|
20 |
+
AnalysisExplanation,
|
21 |
+
)
|
22 |
+
|
23 |
+
from flair.data import Sentence
|
24 |
+
from flair.models import SequenceTagger
|
25 |
+
|
26 |
+
### Creating FlairRecognizer class for NER(names, location)
|
27 |
+
|
28 |
+
class FlairRecognizer(EntityRecognizer):
|
29 |
+
|
30 |
+
ENTITIES = [
|
31 |
+
"LOCATION",
|
32 |
+
"PERSON",
|
33 |
+
"ORGANIZATION",
|
34 |
+
# "MISCELLANEOUS" # - There are no direct correlation with Presidio entities.
|
35 |
+
]
|
36 |
+
|
37 |
+
DEFAULT_EXPLANATION = "Identified as {} by Flair's Named Entity Recognition"
|
38 |
+
|
39 |
+
CHECK_LABEL_GROUPS = [
|
40 |
+
({"LOCATION"}, {"LOC", "LOCATION"}),
|
41 |
+
({"PERSON"}, {"PER", "PERSON"}),
|
42 |
+
({"ORGANIZATION"}, {"ORG"}),
|
43 |
+
# ({"MISCELLANEOUS"}, {"MISC"}), # Probably not PII
|
44 |
+
]
|
45 |
+
|
46 |
+
MODEL_LANGUAGES = {
|
47 |
+
#"en": "flair/ner-english-large",
|
48 |
+
#"es": "flair/ner-spanish-large",
|
49 |
+
"de": "flair/ner-german-large",
|
50 |
+
#"nl": "flair/ner-dutch-large",
|
51 |
+
}
|
52 |
+
|
53 |
+
PRESIDIO_EQUIVALENCES = {
|
54 |
+
"PER": "PERSON",
|
55 |
+
"LOC": "LOCATION",
|
56 |
+
"ORG": "ORGANIZATION",
|
57 |
+
# 'MISC': 'MISCELLANEOUS' # - Probably not PII
|
58 |
+
}
|
59 |
+
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
supported_language: str = "en",
|
63 |
+
supported_entities: Optional[List[str]] = None,
|
64 |
+
check_label_groups: Optional[Tuple[Set, Set]] = None,
|
65 |
+
model: SequenceTagger = None,
|
66 |
+
):
|
67 |
+
self.check_label_groups = (
|
68 |
+
check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS
|
69 |
+
)
|
70 |
+
|
71 |
+
supported_entities = supported_entities if supported_entities else self.ENTITIES
|
72 |
+
self.model = (
|
73 |
+
model
|
74 |
+
if model
|
75 |
+
else SequenceTagger.load(self.MODEL_LANGUAGES.get(supported_language))
|
76 |
+
)
|
77 |
+
|
78 |
+
super().__init__(
|
79 |
+
supported_entities=supported_entities,
|
80 |
+
supported_language=supported_language,
|
81 |
+
name="Flair Analytics",
|
82 |
+
)
|
83 |
+
print("Flair class initialized")
|
84 |
+
|
85 |
+
def load(self) -> None:
|
86 |
+
"""Load the model, not used. Model is loaded during initialization."""
|
87 |
+
pass
|
88 |
+
|
89 |
+
def get_supported_entities(self) -> List[str]:
|
90 |
+
"""
|
91 |
+
Return supported entities by this model.
|
92 |
+
|
93 |
+
:return: List of the supported entities.
|
94 |
+
"""
|
95 |
+
return self.supported_entities
|
96 |
+
|
97 |
+
# Class to use Flair with Presidio as an external recognizer.
|
98 |
+
def analyze(
|
99 |
+
self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None
|
100 |
+
) -> List[RecognizerResult]:
|
101 |
+
"""
|
102 |
+
Analyze text using Text Analytics.
|
103 |
+
|
104 |
+
:param text: The text for analysis.
|
105 |
+
:param entities: Not working properly for this recognizer.
|
106 |
+
:param nlp_artifacts: Not used by this recognizer.
|
107 |
+
:param language: Text language. Supported languages in MODEL_LANGUAGES
|
108 |
+
:return: The list of Presidio RecognizerResult constructed from the recognized
|
109 |
+
Flair detections.
|
110 |
+
"""
|
111 |
+
|
112 |
+
results = []
|
113 |
+
|
114 |
+
sentences = Sentence(text)
|
115 |
+
self.model.predict(sentences)
|
116 |
+
|
117 |
+
# If there are no specific list of entities, we will look for all of it.
|
118 |
+
if not entities:
|
119 |
+
entities = self.supported_entities
|
120 |
+
|
121 |
+
for entity in entities:
|
122 |
+
if entity not in self.supported_entities:
|
123 |
+
continue
|
124 |
+
|
125 |
+
for ent in sentences.get_spans("ner"):
|
126 |
+
if not self.__check_label(
|
127 |
+
entity, ent.labels[0].value, self.check_label_groups
|
128 |
+
):
|
129 |
+
continue
|
130 |
+
textual_explanation = self.DEFAULT_EXPLANATION.format(
|
131 |
+
ent.labels[0].value
|
132 |
+
)
|
133 |
+
explanation = self.build_flair_explanation(
|
134 |
+
round(ent.score, 2), textual_explanation
|
135 |
+
)
|
136 |
+
flair_result = self._convert_to_recognizer_result(ent, explanation)
|
137 |
+
|
138 |
+
results.append(flair_result)
|
139 |
+
|
140 |
+
return results
|
141 |
+
|
142 |
+
def _convert_to_recognizer_result(self, entity, explanation) -> RecognizerResult:
|
143 |
+
|
144 |
+
entity_type = self.PRESIDIO_EQUIVALENCES.get(entity.tag, entity.tag)
|
145 |
+
flair_score = round(entity.score, 2)
|
146 |
+
|
147 |
+
flair_results = RecognizerResult(
|
148 |
+
entity_type=entity_type,
|
149 |
+
start=entity.start_position,
|
150 |
+
end=entity.end_position,
|
151 |
+
score=flair_score,
|
152 |
+
analysis_explanation=explanation,
|
153 |
+
)
|
154 |
+
|
155 |
+
return flair_results
|
156 |
+
|
157 |
+
def build_flair_explanation(
|
158 |
+
self, original_score: float, explanation: str
|
159 |
+
) -> AnalysisExplanation:
|
160 |
+
"""
|
161 |
+
Create explanation for why this result was detected.
|
162 |
+
|
163 |
+
:param original_score: Score given by this recognizer
|
164 |
+
:param explanation: Explanation string
|
165 |
+
:return:
|
166 |
+
"""
|
167 |
+
explanation = AnalysisExplanation(
|
168 |
+
recognizer=self.__class__.__name__,
|
169 |
+
original_score=original_score,
|
170 |
+
textual_explanation=explanation,
|
171 |
+
)
|
172 |
+
return explanation
|
173 |
+
|
174 |
+
@staticmethod
|
175 |
+
def __check_label(
|
176 |
+
entity: str, label: str, check_label_groups: Tuple[Set, Set]
|
177 |
+
) -> bool:
|
178 |
+
return any(
|
179 |
+
[entity in egrp and label in lgrp for egrp, lgrp in check_label_groups]
|
180 |
+
)
|
181 |
+
|
182 |
+
|
183 |
+
class PIIService:
|
184 |
+
def __init__(self):
|
185 |
+
|
186 |
+
configuration = {
|
187 |
+
"nlp_engine_name": "spacy",
|
188 |
+
"models": [
|
189 |
+
{"lang_code": "de", "model_name": "de_core_news_sm"}
|
190 |
+
],
|
191 |
+
}
|
192 |
+
|
193 |
+
# Create NLP engine based on configuration
|
194 |
+
provider = NlpEngineProvider(nlp_configuration=configuration)
|
195 |
+
nlp_engine = provider.create_engine()
|
196 |
+
|
197 |
+
## Creating regex for PatternRecognizers - SWIFT, vehicle number, zipcode, ssn
|
198 |
+
swift_regex = r"\b[A-Z]{4}DE[A-Z0-9]{2}(?:[A-Z0-9]{3})?"
|
199 |
+
vehicle_number_with_hyphen_regex = r"\b[A-ZÄÖÜ]{1,3}-[A-ZÄÖÜ]{1,2}-[0-9]{1,4}"
|
200 |
+
vehicle_number_without_hyphen_regex = r"\b[A-ZÄÖÜ]{1,3}[A-ZÄÖÜ]{1,2}[0-9]{1,4}"
|
201 |
+
german_zipcode_regex = r"\b((?:0[1-46-9]\d{3})|(?:[1-357-9]\d{4})|(?:[4][0-24-9]\d{3})|(?:[6][013-9]\d{3}))\b(?![\d/])"
|
202 |
+
german_ssn_regex = r"\b\d{2}\s?\d{6}\s?[A-Z]\s?\d{3}\b"
|
203 |
+
# Creating Presidio pattern object
|
204 |
+
vehicle_numbers_pattern1 = Pattern(name="vehicle_pattern", regex=vehicle_number_without_hyphen_regex, score=1)
|
205 |
+
vehicle_numbers_pattern2 = Pattern(name="vehicle_pattern", regex=vehicle_number_with_hyphen_regex, score=1)
|
206 |
+
swift_pattern = Pattern(name="bank_swift_pattern", regex=swift_regex, score=1)
|
207 |
+
germanzipcode_pattern = Pattern(name="german_zip_pattern",regex=german_zipcode_regex, score=1)
|
208 |
+
german_ssn_pattern = Pattern(name="german_ssn_pattern",regex=german_ssn_regex, score=1)
|
209 |
+
|
210 |
+
# Define the recognizer
|
211 |
+
swift_recognizer = PatternRecognizer(supported_entity="SWIFT", supported_language="de",patterns=[swift_pattern])
|
212 |
+
vehicle_number_recognizer = PatternRecognizer(supported_entity="VEHICLE_NUMBER", supported_language="de",patterns=[vehicle_numbers_pattern1,vehicle_numbers_pattern2])
|
213 |
+
germanzip_recognizer = PatternRecognizer(supported_entity="GERMAN_ZIP", supported_language="de",patterns=[germanzipcode_pattern])
|
214 |
+
germanssn_recognizer = PatternRecognizer(supported_entity="GERMAN_SSN", supported_language="de",patterns=[german_ssn_pattern])
|
215 |
+
|
216 |
+
## Lading flair entity model for person, location ID
|
217 |
+
print("Loading flair")
|
218 |
+
flair_recognizer = FlairRecognizer(supported_language="de")
|
219 |
+
print("Flair loaded")
|
220 |
+
|
221 |
+
registry = RecognizerRegistry()
|
222 |
+
#registry.load_predefined_recognizers()
|
223 |
+
#registry.add_recognizer(SpacyRecognizer(supported_language="de"))
|
224 |
+
#registry.add_recognizer(SpacyRecognizer(supported_language="en"))
|
225 |
+
|
226 |
+
registry.remove_recognizer("SpacyRecognizer")
|
227 |
+
registry.add_recognizer(flair_recognizer)
|
228 |
+
|
229 |
+
registry.add_recognizer(swift_recognizer)
|
230 |
+
registry.add_recognizer(vehicle_number_recognizer)
|
231 |
+
registry.add_recognizer(germanzip_recognizer)
|
232 |
+
registry.add_recognizer(germanssn_recognizer)
|
233 |
+
|
234 |
+
## Adding predefined recognizers
|
235 |
+
registry.add_recognizer(IbanRecognizer(supported_language="de"))
|
236 |
+
registry.add_recognizer(DateRecognizer(supported_language="de"))
|
237 |
+
registry.add_recognizer(EmailRecognizer(supported_language="de"))
|
238 |
+
registry.add_recognizer(IpRecognizer(supported_language="de"))
|
239 |
+
registry.add_recognizer(PhoneRecognizer(supported_language="de"))
|
240 |
+
registry.add_recognizer(UrlRecognizer(supported_language="de"))
|
241 |
+
registry.add_recognizer(PhoneRecognizer(supported_language="de"))
|
242 |
+
print("Recognizer registry loaded")
|
243 |
+
|
244 |
+
self.analyzer = AnalyzerEngine(registry=registry, nlp_engine=nlp_engine, supported_languages=["de"])
|
245 |
+
|
246 |
+
#print(f"Type of recognizers ::\n {self.analyzer.registry.recognizers}")
|
247 |
+
print("PII initialized")
|
248 |
+
|
249 |
+
self.anonymizer = AnonymizerEngine()
|
250 |
+
|
251 |
+
def identify(self, text):
|
252 |
+
results_de = self.analyzer.analyze(
|
253 |
+
text,
|
254 |
+
language='de'
|
255 |
+
)
|
256 |
+
|
257 |
+
#anonymized_results = self.anonymize(results_de, text)
|
258 |
+
entities = []
|
259 |
+
|
260 |
+
for result in results_de:
|
261 |
+
result_dict = result.to_dict()
|
262 |
+
temp_entity = {
|
263 |
+
"start":result_dict['start'],
|
264 |
+
"end":result_dict['end'],
|
265 |
+
"entity_type":result_dict['entity_type'],
|
266 |
+
"score":result_dict['score'],
|
267 |
+
"word":text[result_dict['start']:result_dict['end']]
|
268 |
+
}
|
269 |
+
entities.append(temp_entity)
|
270 |
+
|
271 |
+
return {"entities":entities, "text":text}#, "anonymized_text":anonymized_results['text']}
|
272 |
+
|
273 |
+
"""def anonymize(self, entities, text):
|
274 |
+
anonymized_results = self.anonymizer.anonymize(
|
275 |
+
text=text,
|
276 |
+
analyzer_results=entities,
|
277 |
+
#operators={"DEFAULT": OperatorConfig("replace", {"new_value": "<ANONYMIZED>"})},
|
278 |
+
)
|
279 |
+
return ""#json.loads(anonymized_results.to_json())"""
|
280 |
+
|
281 |
+
def add_mask(self, data):
|
282 |
+
masked_data = []
|
283 |
+
entity_count = {}
|
284 |
+
|
285 |
+
for item_idx,item in enumerate(data['entities']):
|
286 |
+
entity_type = item['entity_type']
|
287 |
+
word = item['word']
|
288 |
+
suffix = entity_count.get(entity_type, 0) + 1
|
289 |
+
entity_count[entity_type] = suffix
|
290 |
+
|
291 |
+
masked_word = f"{entity_type}_{suffix}"
|
292 |
+
item['mask'] = masked_word
|
293 |
+
#data['entities'][item_idx]['mask'] = masked_word
|
294 |
+
masked_data.append(item)
|
295 |
+
|
296 |
+
return masked_data
|
297 |
+
|
298 |
+
def anonymize(self, entities, text):
|
299 |
+
print("anonymyzing")
|
300 |
+
updated_text = text
|
301 |
+
for ent_idx, ent in enumerate(entities):
|
302 |
+
#text[ent['start']:ent['end']] = ent['mask']
|
303 |
+
updated_text = updated_text[:ent['start']] + " " + ent['mask'] + " " + updated_text[ent['end']:]
|
304 |
+
|
305 |
+
return updated_text
|
306 |
+
|
307 |
+
def remove_overlapping_entities(entities):
|
308 |
+
|
309 |
+
return
|