abdouramandalil commited on
Commit
0625161
·
1 Parent(s): 687b0f7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -0
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import pickle
5
+ from sklearn.preprocessing import LabelEncoder
6
+ from sklearn.ensemble import RandomForestClassifier
7
+ import base64
8
+ import seaborn as sns
9
+
10
+ st.write("""
11
+ # Penguin Prediction App
12
+
13
+ This app predicts the **Palmer Penguin** species!
14
+
15
+ Data obtained from the [palmerpenguins library](https://github.com/allisonhorst/palmerpenguins) in R by Allison Horst.
16
+ """)
17
+
18
+ st.sidebar.title('File Upload Features')
19
+
20
+ # Collects user input features into dataframe
21
+ uploaded_file = st.sidebar.file_uploader("Upload your input CSV file", type=["csv"])
22
+ if uploaded_file is not None:
23
+ df = pd.read_csv(uploaded_file)
24
+ st.dataframe(df)
25
+ le = LabelEncoder()
26
+ df.sex = le.fit_transform(df.sex)
27
+ load_clf = pickle.load(open('penguins_clf.pkl', 'rb'))
28
+ prediction = load_clf.predict(df)
29
+ prediction_proba = load_clf.predict_proba(df)
30
+ st.subheader('Prediction')
31
+ penguins_species = np.array(['Adelie','Chinstrap','Gentoo'])
32
+ pp = pd.DataFrame(penguins_species[prediction],columns=["prediction"])
33
+ st.write(pp)
34
+ st.subheader('Prediction Probability')
35
+ st.dataframe(prediction_proba)
36
+ ndf = pd.concat([df,pp],axis=1)
37
+ st.write(ndf)
38
+ plot = sns.barplot(x ="bill_length_mm",y="bill_depth_mm",data = df )
39
+ st.pyplot(plot)
40
+
41
+ def filedownload(df):
42
+ csv = df.to_csv(index=False)
43
+ b64 = base64.b64encode(csv.encode()).decode() # strings <-> bytes conversions
44
+ href = f'<a href="data:file/csv;base64,{b64}" download="penguins_predictions.csv">Download CSV File</a>'
45
+ return href
46
+
47
+ st.markdown(filedownload(ndf), unsafe_allow_html=True)
48
+
49
+ else:
50
+ st.sidebar.title("Manual Feature input")
51
+ def user_input_features():
52
+ sex = st.sidebar.selectbox('Sex',('male','female'))
53
+ bill_length_mm = st.sidebar.slider('Bill length (mm)', 32.1,59.6,43.9)
54
+ bill_depth_mm = st.sidebar.slider('Bill depth (mm)', 13.1,21.5,17.2)
55
+ flipper_length_mm = st.sidebar.slider('Flipper length (mm)', 172.0,231.0,201.0)
56
+ body_mass_g = st.sidebar.slider('Body mass (g)', 2700.0,6300.0,4207.0)
57
+ data = {
58
+ 'bill_length_mm': bill_length_mm,
59
+ 'bill_depth_mm': bill_depth_mm,
60
+ 'flipper_length_mm': flipper_length_mm,
61
+ 'body_mass_g': body_mass_g,
62
+ 'sex': sex}
63
+ features = pd.DataFrame(data, index=[0])
64
+ return features
65
+ input_df = user_input_features()
66
+ st.subheader('User Input features')
67
+ st.write('Awaiting CSV file to be uploaded. Currently using example input parameters (shown below).')
68
+ st.write(input_df)
69
+ le = LabelEncoder()
70
+ input_df.sex = le.fit_transform(input_df.sex)
71
+ load_clf = pickle.load(open('penguins_clf.pkl', 'rb'))
72
+ prediction = load_clf.predict(input_df)
73
+ prediction_proba = load_clf.predict_proba(input_df)
74
+ st.subheader('Prediction')
75
+ penguins_species = np.array(['Adelie','Chinstrap','Gentoo'])
76
+ st.write(penguins_species[prediction])
77
+ st.subheader('Prediction Probability')
78
+ st.write(prediction_proba)
79
+