Commit
·
0625161
1
Parent(s):
687b0f7
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
from sklearn.preprocessing import LabelEncoder
|
6 |
+
from sklearn.ensemble import RandomForestClassifier
|
7 |
+
import base64
|
8 |
+
import seaborn as sns
|
9 |
+
|
10 |
+
st.write("""
|
11 |
+
# Penguin Prediction App
|
12 |
+
|
13 |
+
This app predicts the **Palmer Penguin** species!
|
14 |
+
|
15 |
+
Data obtained from the [palmerpenguins library](https://github.com/allisonhorst/palmerpenguins) in R by Allison Horst.
|
16 |
+
""")
|
17 |
+
|
18 |
+
st.sidebar.title('File Upload Features')
|
19 |
+
|
20 |
+
# Collects user input features into dataframe
|
21 |
+
uploaded_file = st.sidebar.file_uploader("Upload your input CSV file", type=["csv"])
|
22 |
+
if uploaded_file is not None:
|
23 |
+
df = pd.read_csv(uploaded_file)
|
24 |
+
st.dataframe(df)
|
25 |
+
le = LabelEncoder()
|
26 |
+
df.sex = le.fit_transform(df.sex)
|
27 |
+
load_clf = pickle.load(open('penguins_clf.pkl', 'rb'))
|
28 |
+
prediction = load_clf.predict(df)
|
29 |
+
prediction_proba = load_clf.predict_proba(df)
|
30 |
+
st.subheader('Prediction')
|
31 |
+
penguins_species = np.array(['Adelie','Chinstrap','Gentoo'])
|
32 |
+
pp = pd.DataFrame(penguins_species[prediction],columns=["prediction"])
|
33 |
+
st.write(pp)
|
34 |
+
st.subheader('Prediction Probability')
|
35 |
+
st.dataframe(prediction_proba)
|
36 |
+
ndf = pd.concat([df,pp],axis=1)
|
37 |
+
st.write(ndf)
|
38 |
+
plot = sns.barplot(x ="bill_length_mm",y="bill_depth_mm",data = df )
|
39 |
+
st.pyplot(plot)
|
40 |
+
|
41 |
+
def filedownload(df):
|
42 |
+
csv = df.to_csv(index=False)
|
43 |
+
b64 = base64.b64encode(csv.encode()).decode() # strings <-> bytes conversions
|
44 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="penguins_predictions.csv">Download CSV File</a>'
|
45 |
+
return href
|
46 |
+
|
47 |
+
st.markdown(filedownload(ndf), unsafe_allow_html=True)
|
48 |
+
|
49 |
+
else:
|
50 |
+
st.sidebar.title("Manual Feature input")
|
51 |
+
def user_input_features():
|
52 |
+
sex = st.sidebar.selectbox('Sex',('male','female'))
|
53 |
+
bill_length_mm = st.sidebar.slider('Bill length (mm)', 32.1,59.6,43.9)
|
54 |
+
bill_depth_mm = st.sidebar.slider('Bill depth (mm)', 13.1,21.5,17.2)
|
55 |
+
flipper_length_mm = st.sidebar.slider('Flipper length (mm)', 172.0,231.0,201.0)
|
56 |
+
body_mass_g = st.sidebar.slider('Body mass (g)', 2700.0,6300.0,4207.0)
|
57 |
+
data = {
|
58 |
+
'bill_length_mm': bill_length_mm,
|
59 |
+
'bill_depth_mm': bill_depth_mm,
|
60 |
+
'flipper_length_mm': flipper_length_mm,
|
61 |
+
'body_mass_g': body_mass_g,
|
62 |
+
'sex': sex}
|
63 |
+
features = pd.DataFrame(data, index=[0])
|
64 |
+
return features
|
65 |
+
input_df = user_input_features()
|
66 |
+
st.subheader('User Input features')
|
67 |
+
st.write('Awaiting CSV file to be uploaded. Currently using example input parameters (shown below).')
|
68 |
+
st.write(input_df)
|
69 |
+
le = LabelEncoder()
|
70 |
+
input_df.sex = le.fit_transform(input_df.sex)
|
71 |
+
load_clf = pickle.load(open('penguins_clf.pkl', 'rb'))
|
72 |
+
prediction = load_clf.predict(input_df)
|
73 |
+
prediction_proba = load_clf.predict_proba(input_df)
|
74 |
+
st.subheader('Prediction')
|
75 |
+
penguins_species = np.array(['Adelie','Chinstrap','Gentoo'])
|
76 |
+
st.write(penguins_species[prediction])
|
77 |
+
st.subheader('Prediction Probability')
|
78 |
+
st.write(prediction_proba)
|
79 |
+
|