Spaces:
Sleeping
Sleeping
#Import Libraries | |
import streamlit as st | |
import tensorflow as tf | |
import numpy as np | |
from tensorflow.keras.utils import load_img,img_to_array | |
from tensorflow.keras.preprocessing import image | |
#Title | |
st.title("Image Classification") | |
#Loader l image | |
upload_file = st.sidebar.file_uploader("Telecharger un fichier", | |
type = ['jpg','jpeg','png']) | |
generate_pred = st.sidebar.button("Predict") | |
model = tf.keras.models.load_model("model.h5") | |
covid_classes = {'COVID19':0,'NORMAL':1,'PNEUMONIA':2,'TUBERCULOSIS':3} | |
if upload_file: | |
st.image(upload_file,caption="Image téléchargée",use_column_width=True) | |
test_image=image.load_img(upload_file,target_size=(64,64)) | |
image_array = img_to_array(test_image) | |
image_array = np.expand_dims(image_array,axis=0) | |
if generate_pred: | |
predictions = model.predict(image_array) | |
classes = np.argmax(predictions[0]) | |
for key,value in covid_classes.items(): | |
if value == classes: | |
st.write("The diagnostic is :",key) | |