Spaces:
Runtime error
Runtime error
from pydantic import BaseModel | |
from llama_cpp import Llama | |
from concurrent.futures import ThreadPoolExecutor | |
import re | |
import os | |
import gradio as gr | |
from dotenv import load_dotenv | |
from fastapi import FastAPI, Request | |
from fastapi.responses import JSONResponse | |
import spaces | |
import urllib3 | |
import random | |
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) | |
app = FastAPI() | |
load_dotenv() | |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
global_data = { | |
'model': None, | |
'tokens': { | |
'eos': 'eos_token', | |
'pad': 'pad_token', | |
'padding': 'padding_token', | |
'unk': 'unk_token', | |
'bos': 'bos_token', | |
'sep': 'sep_token', | |
'cls': 'cls_token', | |
'mask': 'mask_token' | |
} | |
} | |
model_configs = [ | |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"}, | |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"}, | |
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf"}, | |
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf"}, | |
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf"}, | |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf"}, | |
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf"}, | |
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf"}, | |
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf"}, | |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf"}, | |
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf"}, | |
{"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf"}, | |
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf"}, | |
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf"}, | |
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf"} | |
] | |
class ModelManager: | |
def __init__(self): | |
self.model = None | |
def load_models(self): | |
models = [] | |
for config in model_configs: | |
try: | |
model = Llama.from_pretrained(repo_id=config['repo_id'], filename=config['filename'], use_auth_token=HUGGINGFACE_TOKEN) | |
models.append(model) | |
except Exception as e: | |
continue | |
self.model = models | |
model_manager = ModelManager() | |
model_manager.load_models() | |
global_data['model'] = model_manager.model | |
class ChatRequest(BaseModel): | |
message: str | |
def normalize_input(input_text): | |
return input_text.strip() | |
def remove_duplicates(text): | |
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text) | |
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text) | |
text = text.replace('[/INST]', '') | |
lines = text.split('\n') | |
unique_lines = [] | |
seen_lines = set() | |
for line in lines: | |
if line not in seen_lines: | |
unique_lines.append(line) | |
seen_lines.add(line) | |
return '\n'.join(unique_lines) | |
async def generate_combined_response(inputs): | |
combined_response = "" | |
top_p = round(random.uniform(0.01, 1.00), 2) | |
top_k = random.randint(1, 100) | |
temperature = round(random.uniform(0.01, 2.00), 2) | |
for model in global_data['model']: | |
try: | |
response = model(inputs, top_p=top_p, top_k=top_k, temperature=temperature) | |
combined_response += remove_duplicates(response['choices'][0]['text']) + "\n" | |
except Exception as e: | |
continue | |
return combined_response | |
async def process_message(message): | |
inputs = normalize_input(message) | |
combined_response = await generate_combined_response(inputs) | |
formatted_response = "" | |
for line in combined_response.split("\n"): | |
formatted_response += f"{line}\n\n" | |
return formatted_response | |
async def api_generate_multimodel(request: Request): | |
data = await request.json() | |
message = data["message"] | |
formatted_response = await process_message(message) | |
return JSONResponse({"response": formatted_response}) | |
iface = gr.Interface( | |
fn=process_message, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."), | |
outputs=gr.Markdown(), | |
title="Multi-Model LLM API", | |
description="Enter a message and get responses from a unified model.", | |
) | |
if __name__ == "__main__": | |
port = int(os.environ.get("PORT", 7860)) | |
iface.launch(server_port=port) | |