|
import gradio as gr |
|
import os |
|
|
|
|
|
|
|
api_token = os.environ.get('HUGGINGFACE_API_TOKEN') |
|
|
|
|
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_community.vectorstores import Chroma |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.llms import HuggingFacePipeline |
|
from langchain.chains import ConversationChain |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain_community.llms import HuggingFaceEndpoint |
|
|
|
from pathlib import Path |
|
import chromadb |
|
from unidecode import unidecode |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
import tqdm |
|
import accelerate |
|
import re |
|
|
|
|
|
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", |
|
"mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
"mistralai/Mistral-7B-Instruct-v0.1", |
|
"tiiuae/falcon-7b-instruct", |
|
] |
|
list_llm_simple = [os.path.basename(llm) for llm in list_llm] |
|
|
|
|
|
def load_doc(list_file_path, chunk_size, chunk_overlap): |
|
|
|
|
|
|
|
loaders = [PyPDFLoader(x) for x in list_file_path] |
|
pages = [] |
|
for loader in loaders: |
|
pages.extend(loader.load()) |
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size = chunk_size, |
|
chunk_overlap = chunk_overlap) |
|
doc_splits = text_splitter.split_documents(pages) |
|
return doc_splits |
|
|
|
|
|
def create_db(splits, collection_name): |
|
embedding = HuggingFaceEmbeddings() |
|
new_client = chromadb.EphemeralClient() |
|
vectordb = Chroma.from_documents( |
|
documents=splits, |
|
embedding=embedding, |
|
client=new_client, |
|
collection_name=collection_name, |
|
|
|
) |
|
return vectordb |
|
|
|
|
|
def load_db(): |
|
embedding = HuggingFaceEmbeddings() |
|
vectordb = Chroma( |
|
|
|
embedding_function=embedding) |
|
return vectordb |
|
|
|
|
|
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
progress(0.1, desc="Initializing HF tokenizer...") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
progress(0.5, desc="Initializing HF Hub...") |
|
|
|
|
|
|
|
if llm_model in ["mistralai/Mistral-7B-Instruct-v0.2", |
|
"mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
"mistralai/Mistral-7B-Instruct-v0.1", |
|
"tiiuae/falcon-7b-instruct"]: |
|
llm = HuggingFaceEndpoint( |
|
repo_id=llm_model, |
|
token=api_token, |
|
|
|
temperature = temperature, |
|
max_new_tokens = max_tokens, |
|
top_k = top_k, |
|
load_in_8bit = True, |
|
) |
|
progress(0.75, desc="Defining buffer memory...") |
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key='answer', |
|
return_messages=True |
|
) |
|
|
|
retriever=vector_db.as_retriever() |
|
progress(0.8, desc="Defining retrieval chain...") |
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
|
|
return_source_documents=True, |
|
|
|
verbose=False, |
|
) |
|
progress(0.9, desc="Done!") |
|
return qa_chain |
|
|
|
|
|
|
|
def create_collection_name(filepath): |
|
|
|
collection_name = Path(filepath).stem |
|
|
|
|
|
collection_name = collection_name.replace(" ","-") |
|
|
|
collection_name = unidecode(collection_name) |
|
|
|
|
|
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) |
|
|
|
collection_name = collection_name[:50] |
|
|
|
if len(collection_name) < 3: |
|
collection_name = collection_name + 'xyz' |
|
|
|
if not collection_name[0].isalnum(): |
|
collection_name = 'A' + collection_name[1:] |
|
if not collection_name[-1].isalnum(): |
|
collection_name = collection_name[:-1] + 'Z' |
|
print('Filepath: ', filepath) |
|
print('Collection name: ', collection_name) |
|
return collection_name |
|
|
|
|
|
|
|
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()): |
|
|
|
list_file_path = [x.name for x in list_file_obj if x is not None] |
|
|
|
progress(0.1, desc="Creating collection name...") |
|
collection_name = create_collection_name(list_file_path[0]) |
|
progress(0.25, desc="Loading document...") |
|
|
|
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) |
|
|
|
progress(0.5, desc="Generating vector database...") |
|
|
|
vector_db = create_db(doc_splits, collection_name) |
|
progress(0.9, desc="Done!") |
|
return vector_db, collection_name, "Complete!" |
|
|
|
|
|
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
|
|
llm_name = list_llm[llm_option] |
|
print("llm_name: ",llm_name) |
|
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) |
|
return qa_chain, "Complete!" |
|
|
|
|
|
def format_chat_history(message, chat_history): |
|
formatted_chat_history = [] |
|
for user_message, bot_message in chat_history: |
|
formatted_chat_history.append(f"User: {user_message}") |
|
formatted_chat_history.append(f"Assistant: {bot_message}") |
|
return formatted_chat_history |
|
|
|
|
|
def conversation(qa_chain, message, history): |
|
formatted_chat_history = format_chat_history(message, history) |
|
|
|
|
|
|
|
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) |
|
response_answer = response["answer"] |
|
if response_answer.find("Helpful Answer:") != -1: |
|
response_answer = response_answer.split("Helpful Answer:")[-1] |
|
response_sources = response["source_documents"] |
|
response_source1 = response_sources[0].page_content.strip() |
|
response_source2 = response_sources[1].page_content.strip() |
|
response_source3 = response_sources[2].page_content.strip() |
|
|
|
response_source1_page = response_sources[0].metadata["page"] + 1 |
|
response_source2_page = response_sources[1].metadata["page"] + 1 |
|
response_source3_page = response_sources[2].metadata["page"] + 1 |
|
|
|
|
|
|
|
|
|
new_history = history + [(message, response_answer)] |
|
|
|
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page |
|
|
|
|
|
def upload_file(file_obj): |
|
list_file_path = [] |
|
for idx, file in enumerate(file_obj): |
|
file_path = file_obj.name |
|
list_file_path.append(file_path) |
|
|
|
|
|
return list_file_path |
|
|
|
|
|
def demo(): |
|
with gr.Blocks(theme="base") as demo: |
|
vector_db = gr.State() |
|
qa_chain = gr.State() |
|
collection_name = gr.State() |
|
|
|
gr.Markdown( |
|
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2> |
|
<h3>Ask any questions about your PDF documents, along with follow-ups</h3> |
|
<b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents. \ |
|
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i> |
|
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br> |
|
""") |
|
with gr.Tab("Step 1 - Document pre-processing"): |
|
with gr.Row(): |
|
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)") |
|
|
|
with gr.Row(): |
|
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database") |
|
with gr.Accordion("Advanced options - Document text splitter", open=False): |
|
with gr.Row(): |
|
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True) |
|
with gr.Row(): |
|
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True) |
|
with gr.Row(): |
|
db_progress = gr.Textbox(label="Vector database initialization", value="None") |
|
with gr.Row(): |
|
db_btn = gr.Button("Generate vector database...") |
|
|
|
with gr.Tab("Step 2 - QA chain initialization"): |
|
with gr.Row(): |
|
llm_btn = gr.Radio(list_llm_simple, \ |
|
label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model") |
|
with gr.Accordion("Advanced options - LLM model", open=False): |
|
with gr.Row(): |
|
slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True) |
|
with gr.Row(): |
|
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True) |
|
with gr.Row(): |
|
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True) |
|
with gr.Row(): |
|
llm_progress = gr.Textbox(value="None",label="QA chain initialization") |
|
with gr.Row(): |
|
qachain_btn = gr.Button("Initialize question-answering chain...") |
|
|
|
with gr.Tab("Step 3 - Conversation with chatbot"): |
|
chatbot = gr.Chatbot(height=300) |
|
with gr.Accordion("Advanced - Document references", open=False): |
|
with gr.Row(): |
|
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) |
|
source1_page = gr.Number(label="Page", scale=1) |
|
with gr.Row(): |
|
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20) |
|
source2_page = gr.Number(label="Page", scale=1) |
|
with gr.Row(): |
|
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20) |
|
source3_page = gr.Number(label="Page", scale=1) |
|
with gr.Row(): |
|
msg = gr.Textbox(placeholder="Type message", container=True) |
|
with gr.Row(): |
|
submit_btn = gr.Button("Submit") |
|
clear_btn = gr.ClearButton([msg, chatbot]) |
|
|
|
|
|
|
|
db_btn.click(initialize_database, \ |
|
inputs=[document, slider_chunk_size, slider_chunk_overlap], \ |
|
outputs=[vector_db, collection_name, db_progress]) |
|
qachain_btn.click(initialize_LLM, \ |
|
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \ |
|
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \ |
|
inputs=None, \ |
|
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ |
|
queue=False) |
|
|
|
|
|
msg.submit(conversation, \ |
|
inputs=[qa_chain, msg, chatbot], \ |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ |
|
queue=False) |
|
submit_btn.click(conversation, \ |
|
inputs=[qa_chain, msg, chatbot], \ |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ |
|
queue=False) |
|
clear_btn.click(lambda:[None,"",0,"",0,"",0], \ |
|
inputs=None, \ |
|
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ |
|
queue=False) |
|
demo.queue().launch(debug=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo() |
|
|
|
|
|
|