Spaces:
Runtime error
Runtime error
File size: 4,583 Bytes
709d394 486a2f6 38fedf1 709d394 a13c01c 29437cc a13c01c 38fedf1 709d394 38fedf1 709d394 dc0acc6 709d394 ef2fea2 600a2a9 709d394 29437cc 709d394 1cdad52 4f6966f b5aae38 6e1661f cd0aa02 6e1661f cd0aa02 a13c01c 6e1661f a13c01c b5aae38 acf224c 7fc9307 acf224c 7fc9307 a13c01c 8325138 1cdad52 4f6966f 1cdad52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import spaces
import gradio as gr
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
title = """
# Welcome to 🌟Tonic's🫡Command-R
🫡Command-R is a Large Language Model optimized for conversational interaction and long context tasks. It targets the “scalable” category of models that balance high performance with strong accuracy, enabling companies to move beyond proof of concept, and into production. 🫡Command-R boasts high precision on retrieval augmented generation (RAG) and tool use tasks, low latency and high throughput, a long 128k context, and strong capabilities across 10 key languages. You can build with this endpoint using🫡Command-R available here : [CohereForAI/c4ai-command-r-v01](https://huggingface.co./CohereForAI/c4ai-command-r-v01). You can also use 🫡Command-R by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co./spaces/Tonic/Command-R?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co./MultiTransformer) Math 🔍 [introspector](https://huggingface.co./introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Torchon](https://github.com/Tonic-AI/Torchon)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
model_id = "CohereForAI/c4ai-command-r-v01"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
@spaces.GPU
def generate_response(user_input, max_new_tokens, temperature):
messages = [{"role": "user", "content": user_input}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
input_ids = input_ids.to(model.device)
gen_tokens = model.generate(
input_ids = input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
)
gen_text = tokenizer.decode(gen_tokens[0], skip_special_tokens=True)
if gen_text.startswith(user_input):
gen_text = gen_text[len(user_input):].lstrip()
return gen_text
examples = [
{"message": "What is the weather like today?", "max_new_tokens": 250, "temperature": 0.5},
{"message": "Tell me a joke.", "max_new_tokens": 650, "temperature": 0.7},
{"message": "Explain the concept of machine learning.", "max_new_tokens": 980, "temperature": 0.4}
]
example_choices = [f"Example {i+1}" for i in range(len(examples))]
def load_example(choice):
index = example_choices.index(choice)
example = examples[index]
return example["message"], example["max_new_tokens"], example["temperature"]
with gr.Blocks() as demo:
gr.Markdown(title)
with gr.Row():
max_new_tokens_slider = gr.Slider(minimum=100, maximum=4000, value=980, label="Max New Tokens")
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.3, label="Temperature")
message_box = gr.Textbox(lines=2, label="Your Message")
generate_button = gr.Button("Try🫡Command-R")
output_box = gr.Textbox(label="🫡Command-R")
generate_button.click(
fn=generate_response,
inputs=[message_box, max_new_tokens_slider, temperature_slider],
outputs=output_box
)
example_dropdown = gr.Dropdown(label="🫡Load Example", choices=example_choices)
example_button = gr.Button("🫡Load")
example_button.click(
fn=load_example,
inputs=example_dropdown,
outputs=[message_box, max_new_tokens_slider, temperature_slider]
)
demo.launch()
|