Spaces:
Runtime error
Runtime error
TejAndrewsACC
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,10 +2,61 @@ import torch
|
|
2 |
import torch.nn as nn
|
3 |
import random
|
4 |
import pickle
|
5 |
-
import gradio as gr
|
6 |
import numpy as np
|
7 |
import torch.nn.functional as F
|
8 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# ---- Memory Management ----
|
11 |
session_memory = []
|
@@ -23,23 +74,18 @@ def load_memory(filename='chat_memory.pkl'):
|
|
23 |
|
24 |
session_memory = load_memory()
|
25 |
|
26 |
-
# ----
|
27 |
-
class
|
28 |
def __init__(self, input_size, hidden_size, output_size):
|
29 |
-
super(
|
30 |
-
self.
|
31 |
-
self.
|
32 |
-
self.fc = nn.Linear(hidden_size, output_size)
|
33 |
-
|
34 |
-
def forward(self, x, hidden):
|
35 |
-
out, hidden = self.rnn(x, hidden)
|
36 |
-
out = self.fc(out[:, -1, :]) # Use last time-step
|
37 |
-
return out, hidden
|
38 |
|
39 |
-
def
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
# ---- PHI Model ----
|
43 |
class PHIModel(nn.Module):
|
44 |
def __init__(self, input_size, output_size):
|
45 |
super(PHIModel, self).__init__()
|
@@ -52,89 +98,50 @@ class PHIModel(nn.Module):
|
|
52 |
x = self.fc2(x)
|
53 |
return x
|
54 |
|
55 |
-
# ----
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
# Generate characters one at a time
|
65 |
-
for _ in range(max_len):
|
66 |
-
output, hidden = model(input_tensor, hidden)
|
67 |
-
prob = F.softmax(output, dim=1)
|
68 |
-
predicted_idx = torch.multinomial(prob, 1).item()
|
69 |
-
predicted_char = idx_to_char[predicted_idx]
|
70 |
-
|
71 |
-
output_str += predicted_char
|
72 |
-
input_tensor = torch.tensor([[predicted_idx]], dtype=torch.long).to(device)
|
73 |
-
|
74 |
-
return output_str
|
75 |
-
|
76 |
-
# ---- Training Data ----
|
77 |
-
def prepare_data(text):
|
78 |
-
# Create a set of all unique characters and map them to indices
|
79 |
-
chars = sorted(list(set(text)))
|
80 |
-
char_to_idx = {char: idx for idx, char in enumerate(chars)}
|
81 |
-
idx_to_char = {idx: char for idx, char in enumerate(chars)}
|
82 |
|
83 |
-
return
|
84 |
|
85 |
-
# ---- Chat
|
86 |
-
def
|
87 |
session_memory.append({"input": user_input})
|
88 |
save_memory(session_memory)
|
89 |
-
|
90 |
-
# Training data (for simplicity, using a sample text)
|
91 |
-
sample_text = "hello there, how can I assist you today?"
|
92 |
-
char_to_idx, idx_to_char = prepare_data(sample_text)
|
93 |
-
|
94 |
-
# Initialize the RNN model with appropriate input/output sizes
|
95 |
-
input_size = len(char_to_idx)
|
96 |
-
hidden_size = 128 # Arbitrary size for hidden layer
|
97 |
-
output_size = len(char_to_idx)
|
98 |
-
|
99 |
-
# Create and load the RNN model
|
100 |
-
model = CharRNN(input_size, hidden_size, output_size).to(device)
|
101 |
-
|
102 |
-
# Load pre-trained weights (here using a dummy initialization for illustration)
|
103 |
-
# In a real case, you would load weights from a trained model
|
104 |
-
model.load_state_dict(torch.load('char_rnn_model.pth', map_location=device))
|
105 |
-
model.eval()
|
106 |
|
107 |
-
# Generate
|
108 |
-
response =
|
109 |
-
|
110 |
return response
|
111 |
|
112 |
# ---- Gradio Interface ----
|
113 |
def chat_interface(user_input):
|
114 |
-
response =
|
115 |
return response
|
116 |
|
117 |
# ---- Gradio App Setup ----
|
118 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
119 |
-
|
120 |
with gr.Blocks() as app:
|
121 |
-
gr.Markdown("# **
|
122 |
|
123 |
with gr.Row():
|
124 |
with gr.Column(scale=1):
|
125 |
-
user_input = gr.Textbox(label="What will you say?", placeholder="Type something here...")
|
126 |
submit_button = gr.Button("Send")
|
127 |
with gr.Column(scale=1):
|
128 |
-
chatbot = gr.Textbox(label="
|
129 |
|
130 |
# Adding custom styling for the UI
|
131 |
gr.HTML("""
|
132 |
<style>
|
133 |
.gradio-container {
|
134 |
-
background-color: #
|
135 |
padding: 20px;
|
136 |
border-radius: 15px;
|
137 |
-
font-family: '
|
138 |
}
|
139 |
.gradio-row {
|
140 |
display: flex;
|
|
|
2 |
import torch.nn as nn
|
3 |
import random
|
4 |
import pickle
|
|
|
5 |
import numpy as np
|
6 |
import torch.nn.functional as F
|
7 |
+
import gradio as gr
|
8 |
+
from datasets import load_dataset
|
9 |
+
from collections import defaultdict
|
10 |
+
|
11 |
+
# ---- Constants and Setup ----
|
12 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
13 |
+
|
14 |
+
# Load the SmolTalk dataset from Hugging Face
|
15 |
+
dataset = load_dataset("HuggingFaceTB/smoltalk", "all", split="train")
|
16 |
+
corpus = [entry['text'] for entry in dataset] # Collect the text from the dataset
|
17 |
+
|
18 |
+
# ---- Advanced Text Generation Mechanisms ----
|
19 |
+
# N-gram Model for Text Generation
|
20 |
+
def generate_ngram(corpus, n=3, length=50):
|
21 |
+
ngrams = defaultdict(list)
|
22 |
+
for sentence in corpus:
|
23 |
+
words = sentence.split()
|
24 |
+
for i in range(len(words) - n + 1):
|
25 |
+
ngrams[tuple(words[i:i + n - 1])].append(words[i + n - 1])
|
26 |
+
|
27 |
+
# Starting word for generation
|
28 |
+
start = random.choice(corpus).split()[:n-1]
|
29 |
+
generated_text = ' '.join(start)
|
30 |
+
|
31 |
+
for _ in range(length - (n - 1)):
|
32 |
+
context = tuple(generated_text.split()[-(n-1):])
|
33 |
+
if context in ngrams:
|
34 |
+
next_word = random.choice(ngrams[context])
|
35 |
+
generated_text += ' ' + next_word
|
36 |
+
else:
|
37 |
+
break
|
38 |
+
|
39 |
+
return generated_text
|
40 |
+
|
41 |
+
# Markov Chain Model for Text Generation
|
42 |
+
def markov_chain(corpus, length=50):
|
43 |
+
markov_model = defaultdict(lambda: defaultdict(int))
|
44 |
+
for sentence in corpus:
|
45 |
+
words = sentence.split()
|
46 |
+
for i in range(len(words) - 1):
|
47 |
+
markov_model[words[i]][words[i + 1]] += 1
|
48 |
+
|
49 |
+
start_word = random.choice(corpus).split()[0]
|
50 |
+
generated_text = start_word
|
51 |
+
|
52 |
+
for _ in range(length - 1):
|
53 |
+
next_word = max(markov_model[generated_text.split()[-1]], key=markov_model[generated_text.split()[-1]].get, default=None)
|
54 |
+
if next_word:
|
55 |
+
generated_text += ' ' + next_word
|
56 |
+
else:
|
57 |
+
break
|
58 |
+
|
59 |
+
return generated_text
|
60 |
|
61 |
# ---- Memory Management ----
|
62 |
session_memory = []
|
|
|
74 |
|
75 |
session_memory = load_memory()
|
76 |
|
77 |
+
# ---- Neural Networks ----
|
78 |
+
class NNModel(nn.Module):
|
79 |
def __init__(self, input_size, hidden_size, output_size):
|
80 |
+
super(NNModel, self).__init__()
|
81 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
82 |
+
self.fc2 = nn.Linear(hidden_size, output_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
def forward(self, x):
|
85 |
+
x = F.relu(self.fc1(x))
|
86 |
+
x = self.fc2(x)
|
87 |
+
return x
|
88 |
|
|
|
89 |
class PHIModel(nn.Module):
|
90 |
def __init__(self, input_size, output_size):
|
91 |
super(PHIModel, self).__init__()
|
|
|
98 |
x = self.fc2(x)
|
99 |
return x
|
100 |
|
101 |
+
# ---- Custom Chat Generation ----
|
102 |
+
def generate_response(user_input):
|
103 |
+
# First, try n-gram or Markov chain for generation
|
104 |
+
ngram_response = generate_ngram(corpus, n=3, length=25)
|
105 |
+
markov_response = markov_chain(corpus, length=25)
|
106 |
|
107 |
+
# Combine both responses for diversity
|
108 |
+
response = f"NG Response: {ngram_response}\n\nMarkov Response: {markov_response}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
return response
|
111 |
|
112 |
+
# ---- Interactive Chat Function ----
|
113 |
+
def advanced_agi_chat(user_input):
|
114 |
session_memory.append({"input": user_input})
|
115 |
save_memory(session_memory)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
# Generate the response based on the input
|
118 |
+
response = generate_response(user_input)
|
|
|
119 |
return response
|
120 |
|
121 |
# ---- Gradio Interface ----
|
122 |
def chat_interface(user_input):
|
123 |
+
response = advanced_agi_chat(user_input)
|
124 |
return response
|
125 |
|
126 |
# ---- Gradio App Setup ----
|
|
|
|
|
127 |
with gr.Blocks() as app:
|
128 |
+
gr.Markdown("# **Autistic Assistant vΓ Edition 2024 Ultra: Gertrude's Autistic Experience**")
|
129 |
|
130 |
with gr.Row():
|
131 |
with gr.Column(scale=1):
|
132 |
+
user_input = gr.Textbox(label="What will you say to Gertrude?", placeholder="Type something here...")
|
133 |
submit_button = gr.Button("Send")
|
134 |
with gr.Column(scale=1):
|
135 |
+
chatbot = gr.Textbox(label="Gertrude's Response", interactive=False) # This is now a Textbox for output
|
136 |
|
137 |
# Adding custom styling for the UI
|
138 |
gr.HTML("""
|
139 |
<style>
|
140 |
.gradio-container {
|
141 |
+
background-color: #B3D9FF;
|
142 |
padding: 20px;
|
143 |
border-radius: 15px;
|
144 |
+
font-family: 'Comic Sans MS';
|
145 |
}
|
146 |
.gradio-row {
|
147 |
display: flex;
|