TabPFN commited on
Commit
b0fb0fe
·
1 Parent(s): dda1ebd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -71,7 +71,7 @@ def compute(df_table):
71
 
72
  ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train_index, cmap=cm_bright)
73
 
74
- classifier = TabPFNClassifier(base_path=tabpfn_path, device='cpu')
75
  classifier.fit(x_train[:, 0:2], y_train)
76
 
77
  DecisionBoundaryDisplay.from_estimator(
@@ -80,7 +80,7 @@ def compute(df_table):
80
  plt.xlabel(headers[0])
81
  plt.ylabel(headers[1])
82
 
83
- return "The plot visualizes a predictor based on only two features and for two classes. The tabular results below are based on the full dataset.", out_table, fig
84
 
85
 
86
  def upload_file(file, remove_entries=10):
 
71
 
72
  ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train_index, cmap=cm_bright)
73
 
74
+ classifier = TabPFNClassifier(base_path=tabpfn_path, device='cpu', N_ensemble_configurations=4)
75
  classifier.fit(x_train[:, 0:2], y_train)
76
 
77
  DecisionBoundaryDisplay.from_estimator(
 
80
  plt.xlabel(headers[0])
81
  plt.ylabel(headers[1])
82
 
83
+ return "The plot visualizes a predictor based on only two features and for two classes. The tabular results below are based on the full dataset.\nThis demo is running on a CPU only and with 4 ensemble members (32 in the paper).", out_table, fig
84
 
85
 
86
  def upload_file(file, remove_entries=10):