File size: 17,666 Bytes
0c6166f
 
 
 
 
 
 
 
 
0f9dd39
1a04d3c
0c6166f
 
1a04d3c
0f9dd39
0c6166f
0f9dd39
 
 
 
 
 
 
 
1a04d3c
 
 
 
 
0c6166f
 
1a04d3c
0f9dd39
0c6166f
 
 
 
1a04d3c
 
0f9dd39
0c6166f
 
 
0f9dd39
1a04d3c
0c6166f
 
0f9dd39
 
1a04d3c
0f9dd39
 
 
 
0c6166f
0f9dd39
 
0c6166f
 
1a04d3c
 
 
 
 
0c6166f
 
 
1a04d3c
 
 
0c6166f
 
 
 
1a04d3c
0c6166f
 
 
 
 
0f9dd39
 
0c6166f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a04d3c
0c6166f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
from collections import OrderedDict
from typing import Dict
import typing

from rwkv.model import RWKV as RWKV_UPSTREAM
import types, gc, os, time, re
import torch
from torch.nn import functional as F

# valid_filter_pattern = r"(((\d+\.\d+\*)?(\d+)(-\d+)?(/\S+)?|(/\S+))(\s+|$))+"
def get_filter_keys_and_merge_coef(layer_filter):
    if layer_filter:
        layers = []
        layer_coef = {}
        layer_remove_patterns = {}
        for layer in layer_filter.split(' '):
            if '/' in layer: #过滤pattern,需要写成正则表达式
                layer,_,remove_pattern = layer.partition('/')
                remove_pattern = re.compile(remove_pattern)
            else:
                remove_pattern = None
            if layer=='':
                layer_remove_patterns['global']=remove_pattern
                continue
            if '*' in layer:
                coef,_,layer = layer.partition('*')
                coef = float(coef)
            else:
                coef = 1 
            if layer.isdecimal():
                layers.append(int(layer))
                layer_coef[int(layer)]=coef
                layer_remove_patterns[int(layer)]=remove_pattern
            elif '-' in layer:
                start,_,end = layer.partition('-')
                start,end = int(start),int(end)
                layers.extend(range(start,end+1))
                for l in range(start,end+1):
                    layer_coef[l] = coef
                    layer_remove_patterns[l]=remove_pattern
            else:
                raise NotImplementedError("layer_filter Not implemented:",layer_filter)
        layers = sorted(set(layers))
        # layer_prefixes = tuple(f"blocks.{l}." for l in layers)
        def filter_keys(keys): 
            new_keys = []
            for key in keys:
                if layer_remove_patterns.get("global") and layer_remove_patterns['global'].search(key):
                    continue #符合全局去除规则
                if key.startswith("blocks."): #过滤掉blocks开头,且不在允许范围内的权重
                    l = int(key.split('.')[1])
                    if l not in layers: #不在允许层,过滤掉
                        continue
                    if layer_remove_patterns[l] and layer_remove_patterns[l].search(key): #符合对应层的去除规则,过滤掉
                        continue
                    # if not key.startswith(layer_prefixes):
                    #     continue
                new_keys.append(key)
            return new_keys
        def merge_coef(key):
            if key.startswith('blocks.') and int(key.split('.')[1]) in layer_coef:
                return layer_coef[int(key.split('.')[1])]
            else:
                return 1
    else:
        def filter_keys(keys):
            return keys
        def merge_coef(key):
            return 1
    return filter_keys,merge_coef

def lora_merge(base_model,lora,lora_alpha,device="cuda",layer_filter=None,):
    print(f"Loading LoRA: {lora}")
    print(f"LoRA alpha={lora_alpha}, layer_filter={layer_filter}")
    filter_keys,merge_coef = get_filter_keys_and_merge_coef(layer_filter)
    w: Dict[str, torch.Tensor] = torch.load(base_model, map_location='cpu')
    # merge LoRA-only slim checkpoint into the main weights
    w_lora: Dict[str, torch.Tensor] = torch.load(lora, map_location='cpu')
    # pdb.set_trace() #DEBUG
    for k in filter_keys(w_lora.keys()): #处理time_mixing之类的融合
        if k in w:
            print(f"replacing {k}")
        w[k] = w_lora[k]
    output_w: typing.OrderedDict[str, torch.Tensor] = OrderedDict()
    # merge LoRA weights
    keys = list(w.keys())
    for k in keys:
        if k.endswith('.weight'):
            prefix = k[:-len('.weight')]
            lora_A = prefix + '.lora_A'
            lora_B = prefix + '.lora_B'
            if lora_A in keys:
                assert lora_B in keys
                print(f'merging {lora_A} and {lora_B} into {k}')
                assert w[lora_B].shape[1] == w[lora_A].shape[0]
                lora_r = w[lora_B].shape[1]
                w[k] = w[k].to(device=device)
                w[lora_A] = w[lora_A].to(device=device)
                w[lora_B] = w[lora_B].to(device=device)
                w[k] += w[lora_B] @ w[lora_A] * (lora_alpha / lora_r) * merge_coef(k)
                output_w[k] = w[k].to(device='cpu', copy=True)
                del w[k]
                del w[lora_A]
                del w[lora_B]
                continue

        if 'lora' not in k:
            print(f'retaining {k}')
            output_w[k] = w[k].clone()
            del w[k]
    return output_w

class RWKV(RWKV_UPSTREAM):
    def __init__(self, model, strategy, verbose = True, convert_and_save_and_exit = None,lora=None,lora_alpha=0,lora_layer_filter=None):
        super(RWKV_UPSTREAM,self).__init__()
        if verbose:
            prxxx = lambda *args, **kwargs: print(*args, **kwargs)
        else:
            prxxx = lambda *args, **kwargs: None

        STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
        if not re.match(STRATEGY_REGEX, strategy):
            raise ValueError("Invalid strategy. Please read https://pypi.org/project/rwkv/")

        strategy = ('->'.join([x.strip() for x in strategy.split('->')])).replace('->', ' -> ')
        self.args = types.SimpleNamespace()
        args = self.args
        args.MODEL_NAME = model
        args.strategy_string = strategy

        # Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow)
        self.RESCALE_LAYER = 6 if 'fp16' in strategy else 0
        prxxx(f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n')

        args.MODEL_NAME = args.MODEL_NAME.strip()
        if not args.MODEL_NAME.endswith('.pth'):
            args.MODEL_NAME += '.pth'
        prxxx(f'Loading {args.MODEL_NAME} ...')
        with torch.no_grad():
            if lora:
                self.w = lora_merge(base_model=args.MODEL_NAME,lora=lora,
                    lora_alpha=lora_alpha,layer_filter=lora_layer_filter,
                    device=('cuda' if 'cuda' in strategy else 'cpu'))
            else:
                self.w = torch.load(args.MODEL_NAME, map_location='cpu') # load model to CPU first
            gc.collect()
            w = self.w
            ALREADY_CONVERTED = False
            if '_strategy' in w:
                ALREADY_CONVERTED = True
                assert convert_and_save_and_exit == None # you should only convert a raw model
                prxxx(f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n")
                assert w['_strategy'] == args.strategy_string # if you are using a new strategy, re-convert the model
                assert float(w['_version']) >= 0.7 # sometimes you should re-convert using latest convert_model.py
                assert w['_rescale_layer'] == self.RESCALE_LAYER
                del w['_strategy']
                del w['_version']
                del w['_rescale_layer']
            
            args.n_embd = w['emb.weight'].shape[1]
            args.n_layer = 0
            keys = list(w.keys())
            for x in keys:
                layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
                args.n_layer = max(args.n_layer, layer_id+1)

            ####################### Compute strategy

            s = [x.strip().split(' ') for x in strategy.split('->')]
            plan = [0] * len(s)
            stream_i = -1
            stream_count = 0
            to_allocate = args.n_layer + 1
            allocated = 0
            free_slots = 0
            for i in range(len(s)):
                si = s[i]
                si1 = si[1]
                if si1.startswith('fp32'): si[1] = [torch.float]
                elif si1.startswith('fp16'): si[1] = [torch.float16]
                elif si1.startswith('bf16'): si[1] = [torch.bfloat16]
                if si1.endswith('i8'): si[1] += [torch.uint8]
                else: si[1] += [si[1][0]]
                if len(si) > 2:
                    ss = si[2]
                    assert ss.startswith('*')
                    if ss.endswith('+'):
                        plan[i] = int(ss[1:-1])
                        stream_i = i
                    else:
                        plan[i] = int(ss[1:])
                    allocated += plan[i]
                    if allocated >= to_allocate:
                        plan[i] += to_allocate - allocated
                        break
                else:
                    free_slots += 1
            if stream_i < 0:
                if free_slots > 0 and to_allocate > allocated:
                    for i in range(len(s)):
                        if plan[i] == 0:
                            plan[i] = (to_allocate - allocated) // free_slots
                            allocated += plan[i]
                            free_slots -= 1
                if to_allocate > allocated:
                    plan[len(s)-1] += to_allocate - allocated
            else:
                if to_allocate > allocated:
                    stream_count = to_allocate - allocated
                    plan[stream_i] += stream_count
            prxxx(f'Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)')
            for i in range(len(s)):
                ss = s[i]
                if i != stream_i:
                    prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers')
                else:
                    prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers')
                plan[i] += (0 if i == 0 else plan[i-1])
            self.strategy = [None] * (args.n_layer + 1)
            strategy = self.strategy
            for n in range(args.n_layer + 1):
                for i in range(len(s)):
                    if n < plan[i]:
                        strategy[n] = types.SimpleNamespace()
                        strategy[n].device = s[i][0]
                        strategy[n].atype = s[i][1][0]
                        strategy[n].wtype = s[i][1][1]
                        strategy[n].stream = False
                        if i == stream_i and n >= (plan[i] - stream_count):
                            strategy[n].stream = True
                        break
                prxxx(f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",end=' ')
            prxxx()

            ####################### Load weights to self.w

            if not ALREADY_CONVERTED:
                try: # precompute embedding
                    w['emb.weight'] = F.layer_norm(w['emb.weight'], (args.n_embd,), weight=w['blocks.0.ln0.weight'], bias=w['blocks.0.ln0.bias'])
                except:
                    w['emb.weight'] = F.layer_norm(w['emb.weight'].float(), (args.n_embd,), weight=w['blocks.0.ln0.weight'].float(), bias=w['blocks.0.ln0.bias'].float())
                del w['blocks.0.ln0.weight']
                del w['blocks.0.ln0.bias']

            print_need_newline = False
            keys = list(w.keys())
            for x in keys:
                w[x].requires_grad = False
                layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
                if ('ln_out.' in x) or ('head.' in x):
                    layer_id = args.n_layer
                dd = strategy[layer_id]
                DEVICE = dd.device
                ATYPE = dd.atype
                WTYPE = dd.wtype

                if not ALREADY_CONVERTED:
                    if self.RESCALE_LAYER > 0:
                        if 'att.output.weight' in x:
                            w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
                        if 'ffn.value.weight' in x:
                            w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))

                    if '.time_' in x:
                        w[x] = w[x].squeeze()
                    if 'key.weight' in x or 'value.weight' in x or 'receptance.weight' in x or 'output.weight' in x or 'head.weight' in x:
                        w[x] = w[x].t()

                    if '.time_decay' in x: # need fp32 for this
                        w[x] = -torch.exp(w[x].float())
                    elif '.time_first' in x: # need fp32 for this
                        w[x] = w[x].float()
                    else:
                        if (len(w[x].shape) == 2) and ('emb' not in x):
                            if WTYPE != torch.uint8:
                                w[x] = w[x].to(dtype=WTYPE)
                            else:
                                w[x] = w[x].float()

                                if w[x].shape[0] > w[x].shape[1]:
                                    w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
                                    w[x] = w[x] - w[x+'_my']
                                    w[x+'_mx'] = torch.amin(w[x], dim=0)
                                    w[x] = w[x] - w[x+'_mx']
                                    w[x+'_rx'] = torch.amax(w[x], dim=0)
                                    w[x] = w[x] / w[x+'_rx']
                                    w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
                                    w[x] = w[x] / w[x+'_ry']
                                else:
                                    w[x+'_mx'] = torch.amin(w[x], dim=0)
                                    w[x] = w[x] - w[x+'_mx']
                                    w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
                                    w[x] = w[x] - w[x+'_my']
                                    w[x+'_rx'] = torch.amax(w[x], dim=0)
                                    w[x] = w[x] / w[x+'_rx']
                                    w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
                                    w[x] = w[x] / w[x+'_ry']

                                w[x] = torch.clip(torch.floor(w[x] * 256), min=0, max=255).to(dtype=torch.uint8)
                                w[x+'_mx'] = w[x+'_mx'].to(dtype=ATYPE).contiguous()
                                w[x+'_rx'] = (w[x+'_rx'] / 16).to(dtype=ATYPE).contiguous()
                                w[x+'_my'] = w[x+'_my'].to(dtype=ATYPE).contiguous()
                                w[x+'_ry'] = (w[x+'_ry'] / 16).to(dtype=ATYPE).contiguous()
                        else:
                            w[x] = w[x].to(dtype=ATYPE)
                
                if convert_and_save_and_exit == None:
                    if 'emb.' in x:
                        w[x] = w[x].contiguous()
                    elif (dd.stream) and (x.endswith('key.weight') or x.endswith('value.weight') or x.endswith('receptance.weight') or x.endswith('output.weight')):
                        try:
                            w[x] = w[x].contiguous().pin_memory() # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :)
                        except:
                            print('Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower.')
                    elif DEVICE != 'cpu':
                        w[x] = w[x].to(device=DEVICE).contiguous()
                    
                    if (dd.stream) or (DEVICE != 'cpu'):
                        try:
                            w[x+'_mx'] = w[x+'_mx'].to(device=DEVICE).contiguous()
                            w[x+'_rx'] = w[x+'_rx'].to(device=DEVICE).contiguous()
                            w[x+'_my'] = w[x+'_my'].to(device=DEVICE).contiguous()
                            w[x+'_ry'] = w[x+'_ry'].to(device=DEVICE).contiguous()
                        except:
                            pass

                if 'ffn.value.weight' in x:
                    gc.collect()
                    if 'cuda' in args.strategy_string:
                        torch.cuda.empty_cache()

                shape = [i for i in w[x].shape if i != 1]
                if len(shape) > 1:
                    shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
                else:
                    shape = f" {str(shape[0]).rjust(5)}      "
                if layer_id == 0 or layer_id >= args.n_layer-1:
                    if print_need_newline:
                        prxxx('\n', end = '')
                        print_need_newline = False
                    dt = str(w[x].dtype).replace('torch.', '')
                    dt = dt.replace('float32', 'f32').replace('bfloat16', 'bf16').replace('float16', 'f16').replace('uint8', 'i8')
                    prxxx(x.ljust(32), dt.rjust(4), str(w[x].device).rjust(8), shape, ' (pinned)' if w[x].is_pinned() else '')
                else:
                    print_need_newline = True
                    prxxx('.', end = '', flush = True)
            
            if convert_and_save_and_exit:
                w['_strategy'] = args.strategy_string
                w['_rescale_layer'] = self.RESCALE_LAYER
                w['_version'] = '0.7'
                if not convert_and_save_and_exit.endswith('.pth'):
                    convert_and_save_and_exit += '.pth'
                prxxx(f'Saving to {convert_and_save_and_exit}...')
                torch.save(w, convert_and_save_and_exit)
                prxxx(f'Converted and saved. Now this will exit.')
                exit(0)
            
            gc.collect()
            if 'cuda' in args.strategy_string:
                torch.cuda.empty_cache()