Spaces:
Running
on
Zero
Running
on
Zero
# utils/depth_estimation.py | |
import os | |
import torch | |
import numpy as np | |
from PIL import Image | |
import open3d as o3d | |
from transformers import DPTImageProcessor, DPTForDepthEstimation | |
from pathlib import Path | |
import logging | |
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR) | |
from utils.image_utils import ( | |
resize_image_with_aspect_ratio | |
) | |
from utils.constants import TMPDIR | |
from easydict import EasyDict as edict | |
# Load models once during module import | |
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large") | |
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large", ignore_mismatched_sizes=True) | |
def estimate_depth(image): | |
# Ensure image is in RGB mode | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
# Resize the image for the model | |
image_resized = image.resize( | |
(image.width, image.height), | |
Image.Resampling.LANCZOS | |
) | |
# Prepare image for the model | |
encoding = image_processor(image_resized, return_tensors="pt") | |
# Forward pass | |
with torch.no_grad(): | |
outputs = depth_model(**encoding) | |
predicted_depth = outputs.predicted_depth | |
# Interpolate to original size | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=(image.height, image.width), | |
mode="bicubic", | |
align_corners=False, | |
).squeeze() | |
# Convert to depth image | |
output = prediction.cpu().numpy() | |
depth_min = output.min() | |
depth_max = output.max() | |
max_val = (2**8) - 1 | |
# Normalize and convert to 8-bit image | |
depth_image = max_val * (output - depth_min) / (depth_max - depth_min) | |
depth_image = depth_image.astype("uint8") | |
depth_pil = Image.fromarray(depth_image) | |
return depth_pil, output | |
def create_3d_model(rgb_image, depth_array, voxel_size_factor=0.01): | |
depth_o3d = o3d.geometry.Image(depth_array.astype(np.float32)) | |
rgb_o3d = o3d.geometry.Image(np.array(rgb_image)) | |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( | |
rgb_o3d, | |
depth_o3d, | |
convert_rgb_to_intensity=False | |
) | |
# Create a point cloud from the RGBD image | |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic( | |
rgb_image.width, | |
rgb_image.height, | |
fx=1.0, | |
fy=1.0, | |
cx=rgb_image.width / 2.0, | |
cy=rgb_image.height / 2.0, | |
) | |
pcd = o3d.geometry.PointCloud.create_from_rgbd_image( | |
rgbd_image, | |
camera_intrinsic | |
) | |
# Voxel downsample | |
voxel_size = max(pcd.get_max_bound() - pcd.get_min_bound()) * voxel_size_factor | |
voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=voxel_size) | |
# Save the 3D model to a temporary file | |
temp_dir = Path.cwd() / "temp_models" | |
temp_dir.mkdir(exist_ok=True) | |
model_path = temp_dir / "model.ply" | |
o3d.io.write_voxel_grid(str(model_path), voxel_grid) | |
return str(model_path) | |
def generate_depth_and_3d(input_image_path, voxel_size_factor): | |
image = Image.open(input_image_path).convert("RGB") | |
resized_image = resize_image_with_aspect_ratio(image, 2688, 1680) | |
depth_image, depth_array = estimate_depth(resized_image) | |
model_path = create_3d_model(resized_image, depth_array, voxel_size_factor=voxel_size_factor) | |
return depth_image, model_path | |
def generate_depth_button_click(depth_image_source, voxel_size_factor, input_image, output_image, overlay_image, bordered_image_output): | |
if depth_image_source == "Input Image": | |
image_path = input_image | |
elif depth_image_source == "Output Image": | |
image_path = output_image | |
elif depth_image_source == "Image with Margins": | |
image_path = bordered_image_output | |
else: | |
image_path = overlay_image | |
return generate_depth_and_3d(image_path, voxel_size_factor) | |
def create_3d_obj(rgb_image, raw_depth, image_path, depth=10, z_scale=200): | |
""" | |
Creates a 3D object from RGB and depth images. | |
Args: | |
rgb_image (np.ndarray): The RGB image as a NumPy array. | |
raw_depth (np.ndarray): The raw depth data. | |
image_path (Path): The path to the original image. | |
depth (int, optional): Depth parameter for Poisson reconstruction. Defaults to 10. | |
z_scale (float, optional): Scaling factor for the Z-axis. Defaults to 200. | |
Returns: | |
str: The file path to the saved GLTF model. | |
""" | |
# Normalize the depth image | |
depth_image = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min()) * 255).astype("uint8") | |
depth_o3d = o3d.geometry.Image(depth_image) | |
image_o3d = o3d.geometry.Image(rgb_image) | |
# Create RGBD image | |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( | |
image_o3d, depth_o3d, convert_rgb_to_intensity=False | |
) | |
height, width = depth_image.shape | |
# Define camera intrinsics | |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic( | |
width, | |
height, | |
fx=z_scale, | |
fy=z_scale, | |
cx=width / 2.0, | |
cy=height / 2.0, | |
) | |
# Generate point cloud from RGBD image | |
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic) | |
# Scale the Z dimension | |
points = np.asarray(pcd.points) | |
depth_scaled = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min())) * (z_scale*100) | |
z_values = depth_scaled.flatten()[:len(points)] | |
points[:, 2] *= z_values | |
pcd.points = o3d.utility.Vector3dVector(points) | |
# Estimate and orient normals | |
pcd.estimate_normals( | |
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=60) | |
) | |
pcd.orient_normals_towards_camera_location(camera_location=np.array([0.0, 0.0, 1.5 ])) | |
# Apply transformations | |
pcd.transform([[1, 0, 0, 0], | |
[0, -1, 0, 0], | |
[0, 0, -1, 0], | |
[0, 0, 0, 1]]) | |
pcd.transform([[-1, 0, 0, 0], | |
[0, 1, 0, 0], | |
[0, 0, 1, 0], | |
[0, 0, 0, 1]]) | |
# Perform Poisson surface reconstruction | |
print(f"Running Poisson surface reconstruction with depth {depth}") | |
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( | |
pcd, depth=depth, width=0, scale=1.1, linear_fit=True | |
) | |
print(f"Raw mesh vertices: {len(mesh_raw.vertices)}, triangles: {len(mesh_raw.triangles)}") | |
# Simplify the mesh using vertex clustering | |
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / (max(width, height) * 0.8) | |
mesh = mesh_raw.simplify_vertex_clustering( | |
voxel_size=voxel_size, | |
contraction=o3d.geometry.SimplificationContraction.Average, | |
) | |
print(f"Simplified mesh vertices: {len(mesh.vertices)}, triangles: {len(mesh.triangles)}") | |
# Crop the mesh to the bounding box of the point cloud | |
bbox = pcd.get_axis_aligned_bounding_box() | |
mesh_crop = mesh.crop(bbox) | |
# Save the mesh as a GLTF file | |
temp_dir = Path.cwd() / "models" | |
temp_dir.mkdir(exist_ok=True) | |
gltf_path = str(temp_dir / f"{image_path.stem}.gltf") | |
o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True) | |
return gltf_path | |
def depth_process_image(image_path, resized_width=800, z_scale=208): | |
""" | |
Processes the input image to generate a depth map and a 3D mesh reconstruction. | |
Args: | |
image_path (str): The file path to the input image. | |
Returns: | |
list: A list containing the depth image, 3D mesh reconstruction, and GLTF file path. | |
""" | |
image_path = Path(image_path) | |
if not image_path.exists(): | |
raise ValueError("Image file not found") | |
# Load and resize the image | |
image_raw = Image.open(image_path).convert("RGB") | |
print(f"Original size: {image_raw.size}") | |
resized_height = int(resized_width * image_raw.size[1] / image_raw.size[0]) | |
image = image_raw.resize((resized_width, resized_height), Image.Resampling.LANCZOS) | |
print(f"Resized size: {image.size}") | |
# Prepare image for the model | |
encoding = image_processor(image, return_tensors="pt") | |
# Perform depth estimation | |
with torch.no_grad(): | |
outputs = depth_model(**encoding) | |
predicted_depth = outputs.predicted_depth | |
# Interpolate depth to match the image size | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=(image.height, image.width), | |
mode="bicubic", | |
align_corners=False, | |
).squeeze() | |
# Normalize the depth image to 8-bit | |
if torch.cuda.is_available(): | |
prediction = prediction.numpy() | |
else: | |
prediction = prediction.cpu().numpy() | |
depth_min, depth_max = prediction.min(), prediction.max() | |
depth_image = ((prediction - depth_min) / (depth_max - depth_min) * 255).astype("uint8") | |
try: | |
gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=10, z_scale=z_scale) | |
except Exception: | |
gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=8, z_scale=z_scale) | |
img = Image.fromarray(depth_image) | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
return [img, gltf_path, gltf_path] | |
def get_depth_map_from_state(state, image_height=1024, image_width=1024): | |
from diff_gaussian_rasterization import GaussianRasterizer, GaussianRasterizationSettings | |
settings = GaussianRasterizationSettings(image_height=image_height, image_width=image_width, kernel_size=0.01,bg=(0.0, 0.0, 0.0)) | |
rasterizer = GaussianRasterizer(settings) | |
# Assume state has necessary data like means3D, scales, etc. | |
rendered_image, rendered_depth, _, _, _, _ = rasterizer(means3D=state["means3D"], means2D=state["means2D"], shs=state["shs"], colors_precomp=state["colors_precomp"], opacities=state["opacities"], scales=state["scales"], rotations=state["rotations"], cov3D_precomp=state["cov3D_precomp"]) | |
name = state['name'] | |
file_path = os.path.join(TMPDIR, f'{name}.png') | |
depth_np = rendered_depth.cpu().numpy()[0] | |
depth_min = depth_np.min() | |
depth_max = depth_np.max() | |
depth_np = (depth_np - depth_min) / (depth_max - depth_min) * 255 | |
depth_np = depth_np.astype(np.uint8) | |
Image.fromarray(depth_np).save(file_path) | |
return file_path |