Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import os | |
import numpy as np | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import imageio | |
import shutil | |
from PIL import Image, ImageFilter | |
from easydict import EasyDict as edict | |
import utils.constants as constants | |
from haishoku.haishoku import Haishoku | |
from tempfile import NamedTemporaryFile | |
import atexit | |
import random | |
#import accelerate | |
from transformers import AutoTokenizer | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
from pathlib import Path | |
import logging | |
#logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR) | |
import gc | |
IS_SHARED_SPACE = constants.IS_SHARED_SPACE | |
# Import functions from modules | |
from utils.file_utils import cleanup_temp_files | |
from utils.color_utils import ( | |
hex_to_rgb, | |
detect_color_format, | |
update_color_opacity, | |
) | |
from utils.misc import ( | |
get_filename, | |
pause, | |
convert_ratio_to_dimensions, | |
get_seed, | |
get_output_name | |
) #install_cuda_toolkit,install_torch, _get_output, setup_runtime_env) | |
from utils.image_utils import ( | |
change_color, | |
open_image, | |
build_prerendered_images_by_quality, | |
upscale_image, | |
lerp_imagemath, | |
shrink_and_paste_on_blank, | |
show_lut, | |
apply_lut_to_image_path, | |
multiply_and_blend_images, | |
alpha_composite_with_control, | |
crop_and_resize_image, | |
convert_to_rgba_png, | |
resize_image_with_aspect_ratio, | |
build_prerendered_images_by_quality, | |
get_image_from_dict | |
) | |
from utils.hex_grid import ( | |
generate_hexagon_grid, | |
generate_hexagon_grid_interface, | |
) | |
from utils.excluded_colors import ( | |
add_color, | |
delete_color, | |
build_dataframe, | |
on_input, | |
excluded_color_list, | |
on_color_display_select | |
) | |
# from utils.ai_generator import ( | |
# generate_ai_image, | |
# ) | |
from utils.lora_details import ( | |
upd_prompt_notes, | |
split_prompt_precisely, | |
approximate_token_count, | |
get_trigger_words | |
) | |
from diffusers import FluxPipeline,FluxImg2ImgPipeline,FluxControlPipeline | |
PIPELINE_CLASSES = { | |
"FluxPipeline": FluxPipeline, | |
"FluxImg2ImgPipeline": FluxImg2ImgPipeline, | |
"FluxControlPipeline": FluxControlPipeline | |
} | |
from utils.version_info import ( | |
versions_html, | |
#initialize_cuda, | |
#release_torch_resources, | |
#get_torch_info | |
) | |
#from utils.depth_estimation import (get_depth_map_from_state) | |
input_image_palette = [] | |
current_prerendered_image = gr.State("./images/images/Beeuty-1.png") | |
user_dir = constants.TMPDIR | |
# Register the cleanup function | |
atexit.register(cleanup_temp_files) | |
def start_session(req: gr.Request): | |
user_dir = os.path.join(constants.TMPDIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
def end_session(req: gr.Request): | |
user_dir = os.path.join(constants.TMPDIR, str(req.session_hash)) | |
shutil.rmtree(user_dir) | |
def hex_create(hex_size, border_size, input_image_path, start_x, start_y, end_x, end_y, rotation, background_color_hex, background_opacity, border_color_hex, border_opacity, fill_hex, excluded_colors_var, filter_color, x_spacing, y_spacing, add_hex_text_option=None, custom_text_list=None, custom_text_color_list=None): | |
global input_image_palette | |
try: | |
# Load and process the input image | |
input_image = Image.open(input_image_path).convert("RGBA") | |
except Exception as e: | |
print(f"Failed to convert image to RGBA: {e}") | |
# Open the original image without conversion | |
input_image = Image.open(input_image_path) | |
# Ensure the canvas is at least 1344x768 pixels | |
min_width, min_height = 1344, 768 | |
canvas_width = max(min_width, input_image.width) | |
canvas_height = max(min_height, input_image.height) | |
# Create a transparent canvas with the required dimensions | |
new_canvas = Image.new("RGBA", (canvas_width, canvas_height), (0, 0, 0, 0)) | |
# Calculate position to center the input image on the canvas | |
paste_x = (canvas_width - input_image.width) // 2 | |
paste_y = (canvas_height - input_image.height) // 2 | |
# Paste the input image onto the canvas | |
new_canvas.paste(input_image, (paste_x, paste_y)) | |
# Save the 'RGBA' image to a temporary file and update 'input_image_path' | |
with NamedTemporaryFile(delete=False, suffix=".png") as tmp_file: | |
new_canvas.save(tmp_file.name, format="PNG") | |
input_image_path = tmp_file.name | |
constants.temp_files.append(tmp_file.name) | |
# Update 'input_image' with the new image as a file path | |
input_image = Image.open(input_image_path) | |
# Use Haishoku to get the palette from the new image | |
input_palette = Haishoku.loadHaishoku(input_image_path) | |
input_image_palette = input_palette.palette | |
# Update colors with opacity | |
background_color = update_color_opacity( | |
hex_to_rgb(background_color_hex), | |
int(background_opacity * (255 / 100)) | |
) | |
border_color = update_color_opacity( | |
hex_to_rgb(border_color_hex), | |
int(border_opacity * (255 / 100)) | |
) | |
# Prepare excluded colors list | |
excluded_color_list = [tuple(lst) for lst in excluded_colors_var] | |
# Generate the hexagon grid images | |
grid_image = generate_hexagon_grid_interface( | |
hex_size, | |
border_size, | |
input_image, | |
start_x, | |
start_y, | |
end_x, | |
end_y, | |
rotation, | |
background_color, | |
border_color, | |
fill_hex, | |
excluded_color_list, | |
filter_color, | |
x_spacing, | |
y_spacing, | |
add_hex_text_option, | |
custom_text_list, | |
custom_text_color_list | |
) | |
return grid_image | |
def get_model_and_lora(model_textbox): | |
""" | |
Determines the model and LoRA weights based on the model_textbox input. | |
wieghts must be in an array ["Borcherding/FLUX.1-dev-LoRA-FractalLand-v0.1"] | |
""" | |
# If the input is in the list of models, return it with None as LoRA weights | |
if model_textbox in constants.MODELS: | |
return model_textbox, [] | |
# If the input is in the list of LoRA weights, get the corresponding model | |
elif model_textbox in constants.LORA_WEIGHTS: | |
model = constants.LORA_TO_MODEL.get(model_textbox) | |
return model, model_textbox.split() | |
else: | |
# Default to a known model if input is unrecognized | |
default_model = model_textbox | |
return default_model, [] | |
condition_dict = { | |
"depth": 0, | |
"canny": 1, | |
"subject": 4, | |
"coloring": 6, | |
"deblurring": 7, | |
"fill": 9, | |
} | |
# @spaces.GPU(duration=140, progress=gr.Progress(track_tqdm=True)) | |
# def generate_image(pipe, generate_params, progress=gr.Progress(track_tqdm=True)): | |
# return pipe(**generate_params) | |
def generate_image_lowmem( | |
text, | |
neg_prompt=None, | |
model_name="black-forest-labs/FLUX.1-dev", | |
lora_weights=None, | |
conditioned_image=None, | |
image_width=1368, | |
image_height=848, | |
guidance_scale=3.5, | |
num_inference_steps=30, | |
seed=0, | |
true_cfg_scale=1.0, | |
pipeline_name="FluxPipeline", | |
strength=0.75, | |
additional_parameters=None, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
#from torch import cuda, bfloat16, float32, Generator, no_grad, backends | |
# Retrieve the pipeline class from the mapping | |
pipeline_class = PIPELINE_CLASSES.get(pipeline_name) | |
if not pipeline_class: | |
raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. " | |
f"Available options: {list(PIPELINE_CLASSES.keys())}") | |
#initialize_cuda() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
from src.condition import Condition | |
print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n") | |
#print(f"\n {get_torch_info()}\n") | |
# Disable gradient calculations | |
with torch.no_grad(): | |
# Initialize the pipeline inside the context manager | |
pipe = pipeline_class.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32 | |
).to(device) | |
# Optionally, don't use CPU offload if not necessary | |
# alternative version that may be more efficient | |
# pipe.enable_sequential_cpu_offload() | |
if pipeline_name == "FluxPipeline": | |
pipe.enable_model_cpu_offload() | |
pipe.vae.enable_slicing() | |
#pipe.vae.enable_tiling() | |
else: | |
pipe.enable_model_cpu_offload() | |
# Access the tokenizer from the pipeline | |
tokenizer = pipe.tokenizer | |
# Check if add_prefix_space is set and convert to slow tokenizer if necessary | |
if getattr(tokenizer, 'add_prefix_space', False): | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, device_map = 'cpu') | |
# Update the pipeline's tokenizer | |
pipe.tokenizer = tokenizer | |
pipe.to(device) | |
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled() | |
if flash_attention_enabled == False: | |
#Enable xFormers memory-efficient attention (optional) | |
#pipe.enable_xformers_memory_efficient_attention() | |
print("\nEnabled xFormers memory-efficient attention.\n") | |
else: | |
pipe.attn_implementation="flash_attention_2" | |
print("\nEnabled flash_attention_2.\n") | |
condition_type = "subject" | |
# Load LoRA weights | |
# note: does not yet handle multiple LoRA weights with different names, needs .set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125]) | |
if lora_weights: | |
for lora_weight in lora_weights: | |
lora_configs = constants.LORA_DETAILS.get(lora_weight, []) | |
lora_weight_set = False | |
if lora_configs: | |
for config in lora_configs: | |
# Load LoRA weights with optional weight_name and adapter_name | |
if 'weight_name' in config: | |
weight_name = config.get("weight_name") | |
adapter_name = config.get("adapter_name") | |
lora_collection = config.get("lora_collection") | |
if weight_name and adapter_name and lora_collection and lora_weight_set == False: | |
pipe.load_lora_weights( | |
lora_collection, | |
weight_name=weight_name, | |
adapter_name=adapter_name, | |
token=constants.HF_API_TOKEN | |
) | |
lora_weight_set = True | |
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n") | |
elif weight_name and adapter_name==None and lora_collection and lora_weight_set == False: | |
pipe.load_lora_weights( | |
lora_collection, | |
weight_name=weight_name, | |
token=constants.HF_API_TOKEN | |
) | |
lora_weight_set = True | |
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n") | |
elif weight_name and adapter_name and lora_weight_set == False: | |
pipe.load_lora_weights( | |
lora_weight, | |
weight_name=weight_name, | |
adapter_name=adapter_name, | |
token=constants.HF_API_TOKEN | |
) | |
lora_weight_set = True | |
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n") | |
elif weight_name and adapter_name==None and lora_weight_set == False: | |
pipe.load_lora_weights( | |
lora_weight, | |
weight_name=weight_name, | |
token=constants.HF_API_TOKEN | |
) | |
lora_weight_set = True | |
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n") | |
elif lora_weight_set == False: | |
pipe.load_lora_weights( | |
lora_weight, | |
token=constants.HF_API_TOKEN | |
) | |
lora_weight_set = True | |
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n") | |
# Apply 'pipe' configurations if present | |
if 'pipe' in config: | |
pipe_config = config['pipe'] | |
for method_name, params in pipe_config.items(): | |
method = getattr(pipe, method_name, None) | |
if method: | |
print(f"Applying pipe method: {method_name} with params: {params}") | |
method(**params) | |
else: | |
print(f"Method {method_name} not found in pipe.") | |
if 'condition_type' in config: | |
condition_type = config['condition_type'] | |
if condition_type == "coloring": | |
#pipe.enable_coloring() | |
print("\nEnabled coloring.\n") | |
elif condition_type == "deblurring": | |
#pipe.enable_deblurring() | |
print("\nEnabled deblurring.\n") | |
elif condition_type == "fill": | |
#pipe.enable_fill() | |
print("\nEnabled fill.\n") | |
elif condition_type == "depth": | |
#pipe.enable_depth() | |
print("\nEnabled depth.\n") | |
elif condition_type == "canny": | |
#pipe.enable_canny() | |
print("\nEnabled canny.\n") | |
elif condition_type == "subject": | |
#pipe.enable_subject() | |
print("\nEnabled subject.\n") | |
else: | |
print(f"Condition type {condition_type} not implemented.") | |
else: | |
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN) | |
# Set the random seed for reproducibility | |
generator = torch.Generator(device=device).manual_seed(seed) | |
conditions = [] | |
if conditioned_image is not None: | |
conditioned_image = crop_and_resize_image(conditioned_image, image_width, image_height) | |
condition = Condition(condition_type, conditioned_image) | |
conditions.append(condition) | |
print(f"\nAdded conditioned image.\n {conditioned_image.size}") | |
# Prepare the parameters for image generation | |
additional_parameters ={ | |
"strength": strength, | |
"image": conditioned_image, | |
} | |
else: | |
print("\nNo conditioned image provided.") | |
if neg_prompt!=None: | |
true_cfg_scale=1.1 | |
additional_parameters ={ | |
"negative_prompt": neg_prompt, | |
"true_cfg_scale": true_cfg_scale, | |
} | |
# handle long prompts by splitting them | |
if approximate_token_count(text) > 76: | |
prompt, prompt2 = split_prompt_precisely(text) | |
prompt_parameters = { | |
"prompt" : prompt, | |
"prompt_2": prompt2 | |
} | |
else: | |
prompt_parameters = { | |
"prompt" :text | |
} | |
additional_parameters.update(prompt_parameters) | |
# Combine all parameters | |
generate_params = { | |
"height": image_height, | |
"width": image_width, | |
"guidance_scale": guidance_scale, | |
"num_inference_steps": num_inference_steps, | |
"generator": generator, } | |
if additional_parameters: | |
generate_params.update(additional_parameters) | |
generate_params = {k: v for k, v in generate_params.items() if v is not None} | |
print(f"generate_params: {generate_params}") | |
# Generate the image | |
result = pipe(**generate_params) #generate_image(pipe,generate_params) | |
image = result.images[0] | |
# Clean up | |
del result | |
del conditions | |
del generator | |
# Delete the pipeline and clear cache | |
del pipe | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
print(torch.cuda.memory_summary(device=None, abbreviated=False)) | |
return image | |
def generate_ai_image_local ( | |
map_option, | |
prompt_textbox_value, | |
neg_prompt_textbox_value, | |
model="black-forest-labs/FLUX.1-dev", | |
lora_weights=None, | |
conditioned_image=None, | |
height=512, | |
width=912, | |
num_inference_steps=30, | |
guidance_scale=3.5, | |
seed=777, | |
pipeline_name="FluxPipeline", | |
strength=0.75, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
print(f"Generating image with lowmem") | |
try: | |
if map_option != "Prompt": | |
prompt = constants.PROMPTS[map_option] | |
negative_prompt = constants.NEGATIVE_PROMPTS.get(map_option, "") | |
else: | |
prompt = prompt_textbox_value | |
negative_prompt = neg_prompt_textbox_value or "" | |
#full_prompt = f"{prompt} {negative_prompt}" | |
additional_parameters = {} | |
if lora_weights: | |
for lora_weight in lora_weights: | |
lora_configs = constants.LORA_DETAILS.get(lora_weight, []) | |
for config in lora_configs: | |
if 'parameters' in config: | |
additional_parameters.update(config['parameters']) | |
elif 'trigger_words' in config: | |
trigger_words = get_trigger_words(lora_weight) | |
prompt = f"{trigger_words} {prompt}" | |
for key, value in additional_parameters.items(): | |
if key in ['height', 'width', 'num_inference_steps', 'max_sequence_length']: | |
additional_parameters[key] = int(value) | |
elif key in ['guidance_scale','true_cfg_scale']: | |
additional_parameters[key] = float(value) | |
height = additional_parameters.pop('height', height) | |
width = additional_parameters.pop('width', width) | |
num_inference_steps = additional_parameters.pop('num_inference_steps', num_inference_steps) | |
guidance_scale = additional_parameters.pop('guidance_scale', guidance_scale) | |
print("Generating image with the following parameters:\n") | |
print(f"Model: {model}") | |
print(f"LoRA Weights: {lora_weights}") | |
print(f"Prompt: {prompt}") | |
print(f"Neg Prompt: {negative_prompt}") | |
print(f"Height: {height}") | |
print(f"Width: {width}") | |
print(f"Number of Inference Steps: {num_inference_steps}") | |
print(f"Guidance Scale: {guidance_scale}") | |
print(f"Seed: {seed}") | |
print(f"Additional Parameters: {additional_parameters}") | |
print(f"Conditioned Image: {conditioned_image}") | |
print(f"Conditioned Image Strength: {strength}") | |
print(f"pipeline: {pipeline_name}") | |
image = generate_image_lowmem( | |
text=prompt, | |
model_name=model, | |
neg_prompt=negative_prompt, | |
lora_weights=lora_weights, | |
conditioned_image=conditioned_image, | |
image_width=width, | |
image_height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
seed=seed, | |
pipeline_name=pipeline_name, | |
strength=strength, | |
additional_parameters=additional_parameters | |
) | |
with NamedTemporaryFile(delete=False, suffix=".png") as tmp: | |
image.save(tmp.name, format="PNG") | |
constants.temp_files.append(tmp.name) | |
print(f"Image saved to {tmp.name}") | |
return tmp.name | |
except Exception as e: | |
print(f"Error generating AI image: {e}") | |
#gc.collect() | |
return None | |
def generate_input_image_click(image_input, map_option, prompt_textbox_value, negative_prompt_textbox_value, model_textbox_value, randomize_seed=True, seed=None, use_conditioned_image=False, strength=0.5, image_format="16:9", scale_factor=(8/3), progress=gr.Progress(track_tqdm=True)): | |
seed = get_seed(randomize_seed, seed) | |
# Get the model and LoRA weights | |
model, lora_weights = get_model_and_lora(model_textbox_value) | |
global current_prerendered_image | |
conditioned_image=None | |
formatted_map_option = map_option.lower().replace(' ', '_') | |
if use_conditioned_image: | |
print(f"Conditioned path: {current_prerendered_image.value}.. converting to RGB\n") | |
# ensure the conditioned image is an image and not a string, cannot use RGBA | |
if isinstance(current_prerendered_image.value, str): | |
conditioned_image = open_image(current_prerendered_image.value).convert("RGB") | |
print(f"Conditioned Image: {conditioned_image.size}.. converted to RGB\n") | |
# use image_input as the conditioned_image if it is not None | |
elif image_input is not None: | |
conditioned_image = open_image(image_input).convert("RGB") | |
print(f"Conditioned Image set to modify Input Image!\nClear to generate new image.") | |
gr.Info("Conditioned Image set to modify Input Image! Clear to generate new image",duration=5) | |
# Convert image_format from a string split by ":" into two numbers divided | |
width_ratio, height_ratio = map(int, image_format.split(":")) | |
aspect_ratio = width_ratio / height_ratio | |
width, height = convert_ratio_to_dimensions(aspect_ratio, 576) | |
pipeline = "FluxPipeline" | |
if conditioned_image is not None: | |
pipeline = "FluxImg2ImgPipeline" | |
# Generate the AI image and get the image path | |
image_path = generate_ai_image_local( | |
map_option, | |
prompt_textbox_value, | |
negative_prompt_textbox_value, | |
model, | |
lora_weights, | |
conditioned_image, | |
strength=strength, | |
height=height, | |
width=width, | |
seed=seed, | |
pipeline_name=pipeline, | |
) | |
# Open the generated image | |
try: | |
image = Image.open(image_path).convert("RGBA") | |
except Exception as e: | |
print(f"Failed to open generated image: {e}") | |
return image_path, seed # Return the original image path if opening fails | |
# Upscale the image | |
upscaled_image = upscale_image(image, scale_factor) | |
# Save the upscaled image to a temporary file | |
with NamedTemporaryFile(delete=False, suffix=".png", prefix=f"{formatted_map_option}_") as tmp_upscaled: | |
upscaled_image.save(tmp_upscaled.name, format="PNG") | |
constants.temp_files.append(tmp_upscaled.name) | |
print(f"Upscaled image saved to {tmp_upscaled.name}") | |
gc.collect() | |
# Return the path of the upscaled image | |
return tmp_upscaled.name, seed | |
def update_prompt_visibility(map_option): | |
is_visible = (map_option == "Prompt") | |
return ( | |
gr.update(visible=is_visible), | |
gr.update(visible=is_visible), | |
gr.update(visible=is_visible) | |
) | |
def update_prompt_notes(model_textbox_value): | |
return upd_prompt_notes(model_textbox_value) | |
def on_prerendered_gallery_selection(event_data: gr.SelectData): | |
global current_prerendered_image | |
selected_index = event_data.index | |
selected_image = constants.pre_rendered_maps_paths[selected_index] | |
print(f"Template Image Selected: {selected_image} ({event_data.index})\n") | |
gr.Info(f"Template Image Selected: {selected_image} ({event_data.index})",duration=5) | |
current_prerendered_image.value = selected_image | |
return current_prerendered_image | |
def combine_images_with_lerp(input_image, output_image, alpha): | |
in_image = open_image(input_image) | |
out_image = open_image(output_image) | |
print(f"Combining images with alpha: {alpha}") | |
return lerp_imagemath(in_image, out_image, alpha) | |
def add_border(image, mask_width, mask_height, blank_color): | |
bordered_image_output = Image.open(image).convert("RGBA") | |
margin_color = detect_color_format(blank_color) | |
print(f"Adding border to image with width: {mask_width}, height: {mask_height}, color: {margin_color}") | |
return shrink_and_paste_on_blank(bordered_image_output, mask_width, mask_height, margin_color) | |
####################################### DEPTH ESTIMATION ####################################### | |
def preprocess_image(image: Image.Image) -> Image.Image: | |
""" | |
Preprocess the input image. | |
Args: | |
image (Image.Image): The input image. | |
Returns: | |
Image.Image: The preprocessed image. | |
""" | |
processed_image = TRELLIS_PIPELINE.preprocess_image(image) | |
return processed_image | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, name: str) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
'name': name | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
name = state['name'] | |
return gs, mesh, name | |
def generate_3d_asset(depth_image_source, randomize_seed, seed, input_image, output_image, overlay_image, bordered_image_output, req: gr.Request, progress=gr.Progress(track_tqdm=True)): | |
# Choose the image based on source | |
if depth_image_source == "Input Image": | |
image_path = input_image | |
elif depth_image_source == "Output Image": | |
image_path = output_image | |
elif depth_image_source == "Image with Margins": | |
image_path = bordered_image_output | |
else: # "Overlay Image" | |
image_path = overlay_image | |
output_name = get_output_name(input_image, output_image, overlay_image, bordered_image_output) | |
# Ensure the file exists | |
if not Path(image_path).exists(): | |
raise ValueError("Image file not found.") | |
# Determine the final seed using default MAX_SEED from constants | |
final_seed = np.random.randint(0, constants.MAX_SEED) if randomize_seed else seed | |
# Open image using standardized defaults | |
image_raw = Image.open(image_path).convert("RGB") | |
# Preprocess and run the Trellis pipeline with fixed sampler settings | |
# Returns: | |
# dict: The information of the generated 3D model. | |
# str: The path to the video of the 3D model. | |
processed_image = TRELLIS_PIPELINE.preprocess_image(image_raw, max_resolution=1536) | |
outputs = TRELLIS_PIPELINE.run( | |
processed_image, | |
seed=final_seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": 12, | |
"cfg_strength": 7.5, | |
}, | |
slat_sampler_params={ | |
"steps": 12, | |
"cfg_strength": 3.0, | |
}, | |
) | |
# Validate the mesh | |
mesh = outputs['mesh'][0] | |
# Depending on the mesh format (it might be a dict or an object) | |
meshisdict = isinstance(mesh, dict) | |
if meshisdict: | |
vertices = mesh['vertices'] | |
faces = mesh['faces'] | |
else: | |
vertices = mesh.vertices | |
faces = mesh.faces | |
# Check mesh properties | |
print(f"Mesh vertices: {vertices.shape}, faces: {faces.shape}") | |
if faces.max() >= vertices.shape[0]: | |
raise ValueError(f"Invalid mesh: face index {faces.max()} exceeds vertex count {vertices.shape[0]}") | |
# Ensure data is on GPU and has correct type | |
if not vertices.is_cuda or not faces.is_cuda: | |
raise ValueError("Mesh data must be on GPU") | |
if vertices.dtype != torch.float32 or faces.dtype != torch.int32: | |
if meshisdict: | |
mesh['faces'] = faces.to(torch.int32) | |
mesh['vertices'] = vertices.to(torch.float32) | |
else: | |
mesh.faces = faces.to(torch.int32) | |
mesh.vertices = vertices.to(torch.float32) | |
#raise ValueError("Mesh vertices must be float32, faces must be int32") | |
# Save the video to a temporary file | |
user_dir = os.path.join(constants.TMPDIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
video = render_utils.render_video(outputs['gaussian'][0], resolution=512, num_frames=64, r=1, fov=45)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], resolution=512, num_frames=64, r=1, fov=45)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
video_path = os.path.join(user_dir, f'{output_name}.mp4') | |
imageio.mimsave(video_path, video, fps=8) | |
snapshot_results = render_utils.render_snapshot_depth(outputs['mesh'][0], resolution=1536, r=1, fov=80) | |
depth_snapshot = Image.fromarray(snapshot_results['normal'][0]).convert("L") | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], output_name) | |
#depth_snapshot = get_depth_map_from_state(state, image_raw.size[0], image_raw.size[1]) | |
torch.cuda.empty_cache() | |
return [state, video_path, depth_snapshot] | |
def extract_glb( | |
state: dict, | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request,progress=gr.Progress(track_tqdm=True) | |
) -> Tuple[str, str]: | |
""" | |
Extract a GLB file from the 3D model. | |
Args: | |
state (dict): The state of the generated 3D model. | |
mesh_simplify (float): The mesh simplification factor. | |
texture_size (int): The texture resolution. | |
Returns: | |
str: The path to the extracted GLB file. | |
""" | |
user_dir = os.path.join(constants.TMPDIR, str(req.session_hash)) | |
gs, mesh, name = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = os.path.join(user_dir, f'{name}.glb') | |
glb.export(glb_path) | |
torch.cuda.empty_cache() | |
return glb_path, glb_path | |
def extract_gaussian(state: dict, req: gr.Request, progress=gr.Progress(track_tqdm=True)) -> Tuple[str, str]: | |
""" | |
Extract a Gaussian file from the 3D model. | |
Args: | |
state (dict): The state of the generated 3D model. | |
Returns: | |
str: The path to the extracted Gaussian file. | |
""" | |
user_dir = os.path.join(constants.TMPDIR, str(req.session_hash)) | |
gs, _, name = unpack_state(state) | |
gaussian_path = os.path.join(user_dir, f'{name}.ply') | |
gs.save_ply(gaussian_path) | |
torch.cuda.empty_cache() | |
return gaussian_path, gaussian_path | |
def getVersions(): | |
return versions_html() | |
#generate_input_image_click.zerogpu = True | |
#generate_depth_button_click.zerogpu = True | |
#def main(debug=False): | |
title = "HexaGrid Creator" | |
#description = "Customizable Hexagon Grid Image Generator" | |
examples = [["assets//examples//hex_map_p1.png", 32, 1, 0, 0, 0, 0, 0, "#ede9ac44","#12165380", True]] | |
gr.set_static_paths(paths=["images/","images/images","images/prerendered","LUT/","fonts/","assets/"]) | |
# Gradio Blocks Interface | |
with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty',delete_cache=(21600,86400)) as hexaGrid: | |
with gr.Row(): | |
gr.Markdown(""" | |
# HexaGrid Creator | |
## Transform Your Images into Mesmerizing Hexagon Grid Masterpieces! ⬢""", elem_classes="intro") | |
with gr.Row(): | |
with gr.Accordion("Welcome to HexaGrid Creator, the ultimate tool for transforming your images into stunning hexagon grid artworks. Whether you're a tabletop game enthusiast, a digital artist, or someone who loves unique patterns, HexaGrid Creator has something for you.", open=False, elem_classes="intro"): | |
gr.Markdown (""" | |
## Drop an image into the Input Image and get started! | |
## What is HexaGrid Creator? | |
HexaGrid Creator is a web-based application that allows you to apply a hexagon grid overlay to any image. You can customize the size, color, and opacity of the hexagons, as well as the background and border colors. The result is a visually striking image that looks like it was made from hexagonal tiles! | |
### What Can You Do? | |
- **Generate Hexagon Grids:** Create beautiful hexagon grid overlays on any image with fully customizable parameters. | |
- **AI-Powered Image Generation:** Use advanced AI models to generate images based on your prompts and apply hexagon grids to them. | |
- **Color Exclusion:** Select and exclude specific colors from your hexagon grid for a cleaner and more refined look. | |
- **Interactive Customization:** Adjust hexagon size, border size, rotation, background color, and more in real-time. | |
- **Depth and 3D Model Generation:** Generate depth maps and 3D models from your images for enhanced visualization. | |
- **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement. | |
- **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization. | |
- **Add Margins:** Add customizable margins around your images for a polished finish. | |
### Why You'll Love It | |
- **Fun and Easy to Use:** With an intuitive interface and real-time previews, creating hexagon grids has never been this fun! | |
- **Endless Creativity:** Unleash your creativity with endless customization options and see your images transform in unique ways. | |
- **Hexagon-Inspired Theme:** Enjoy a delightful yellow and purple theme inspired by hexagons! ⬢ | |
- **Advanced AI Models:** Leverage advanced AI models and LoRA weights for high-quality image generation and customization. | |
### Get Started | |
1. **Upload or Generate an Image:** Start by uploading your own image or generate one using our AI-powered tool. | |
2. **Customize Your Grid:** Play around with the settings to create the perfect hexagon grid overlay. | |
3. **Download and Share:** Once you're happy with your creation, download it and share it with the world! | |
### Advanced Features | |
- **Generative AI Integration:** Utilize models like `black-forest-labs/FLUX.1-dev` and various LoRA weights for generating unique images. | |
- **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization. | |
- **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement. | |
- **Depth and 3D Model Generation:** Create depth maps and 3D models from your images for enhanced visualization. | |
- **Add Margins:** Customize margins around your images for a polished finish. | |
Join the hive and start creating with HexaGrid Creator today! | |
""", elem_classes="intro") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
input_image = gr.Image( | |
label="Input Image", | |
type="filepath", | |
interactive=True, | |
elem_classes="centered solid imgcontainer", | |
key="imgInput", | |
image_mode=None, | |
format="PNG" | |
) | |
# New code to convert input image to RGBA PNG | |
def on_input_image_change(image_path): | |
if image_path is None: | |
gr.Warning("Please upload an Input Image to get started.") | |
return None | |
img, img_path = convert_to_rgba_png(image_path) | |
return img_path | |
input_image.change( | |
fn=on_input_image_change, | |
inputs=[input_image], | |
outputs=[input_image], scroll_to_output=True, | |
) | |
with gr.Column(): | |
with gr.Accordion("Hex Coloring and Exclusion", open = False): | |
with gr.Row(): | |
with gr.Column(): | |
color_picker = gr.ColorPicker(label="Pick a color to exclude",value="#505050") | |
with gr.Column(): | |
filter_color = gr.Checkbox(label="Filter Excluded Colors from Sampling", value=False,) | |
exclude_color_button = gr.Button("Exclude Color", elem_id="exlude_color_button", elem_classes="solid") | |
color_display = gr.DataFrame(label="List of Excluded RGBA Colors", headers=["R", "G", "B", "A"], elem_id="excluded_colors", type="array", value=build_dataframe(excluded_color_list), interactive=True, elem_classes="solid centered") | |
selected_row = gr.Number(0, label="Selected Row", visible=False) | |
delete_button = gr.Button("Delete Row", elem_id="delete_exclusion_button", elem_classes="solid") | |
fill_hex = gr.Checkbox(label="Fill Hex with color from Image", value=True) | |
with gr.Accordion("Image Filters", open = False): | |
with gr.Row(): | |
with gr.Column(): | |
composite_color = gr.ColorPicker(label="Color", value="#ede9ac44") | |
with gr.Column(): | |
composite_opacity = gr.Slider(label="Opacity %", minimum=0, maximum=100, value=50, interactive=True) | |
with gr.Row(): | |
composite_button = gr.Button("Composite", elem_classes="solid") | |
with gr.Row(): | |
with gr.Column(): | |
lut_filename = gr.Textbox( | |
value="", | |
label="Look Up Table (LUT) File Name", | |
elem_id="lutFileName") | |
with gr.Column(): | |
lut_file = gr.File( | |
value=None, | |
file_count="single", | |
file_types=[".cube"], | |
type="filepath", | |
label="LUT cube File") | |
with gr.Row(): | |
lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=constants.default_lut_example_img) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(""" | |
### Included Filters (LUTs) | |
There are several included Filters: | |
Try them on the example image before applying to your Input Image. | |
""", elem_id="lut_markdown") | |
with gr.Column(): | |
gr.Examples(elem_id="lut_examples", | |
examples=[[f] for f in constants.lut_files], | |
inputs=[lut_filename], | |
outputs=[lut_filename], | |
label="Select a Filter (LUT) file. Populate the LUT File Name field" | |
) | |
with gr.Row(): | |
apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button") | |
lut_file.change(get_filename, inputs=[lut_file], outputs=[lut_filename]) | |
lut_filename.change(show_lut, inputs=[lut_filename, lut_example_image], outputs=[lut_example_image]) | |
apply_lut_button.click( | |
lambda lut_filename, input_image: gr.Warning("Please upload an Input Image to get started.") if input_image is None else apply_lut_to_image_path(lut_filename, input_image)[0], | |
inputs=[lut_filename, input_image], | |
outputs=[input_image], | |
scroll_to_output=True | |
) | |
with gr.Row(): | |
with gr.Accordion("Generate AI Image (click here for options)", open = False): | |
with gr.Row(): | |
with gr.Column(): | |
model_options = gr.Dropdown( | |
label="Choose an AI Model*", | |
choices=constants.MODELS + constants.LORA_WEIGHTS + ["Manual Entry"], | |
value="Cossale/Frames2-Flex.1", | |
elem_classes="solid" | |
) | |
model_textbox = gr.Textbox( | |
label="LORA/Model", | |
value="Cossale/Frames2-Flex.1", | |
elem_classes="solid", | |
elem_id="inference_model", | |
visible=False | |
) | |
# Update map_options to a Dropdown with choices from constants.PROMPTS keys | |
with gr.Row(): | |
with gr.Column(): | |
map_options = gr.Dropdown( | |
label="Map Options*", | |
choices=list(constants.PROMPTS.keys()), | |
value="Alien Landscape", | |
elem_classes="solid", | |
scale=0 | |
) | |
# Add Dropdown for sizing of Images, height and width based on selection. Options are 16x9, 16x10, 4x5, 1x1 | |
# The values of height and width are based on common resolutions for each aspect ratio | |
# Default to 16x9, 912x512 | |
image_size_ratio = gr.Dropdown(label="Image Aspect Ratio", choices=["16:9", "16:10", "4:5", "4:3", "2:1","3:2","1:1", "9:16", "10:16", "5:4", "3:4","1:2", "2:3"], value="16:9", elem_classes="solid", type="value", scale=0, interactive=True) | |
with gr.Column(): | |
seed_slider = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=constants.MAX_SEED, | |
step=1, | |
value=0, | |
scale=0, randomize=True, elem_id="rnd_seed" | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=False, scale=0, interactive=True) | |
prompt_textbox = gr.Textbox( | |
label="Prompt", | |
visible=False, | |
elem_classes="solid", | |
value="top-down, (rectangular tabletop_map) alien planet map, Battletech_boardgame scifi world with forests, lakes, oceans, continents and snow at the top and bottom, (middle is dark, no_reflections, no_shadows), from directly above. From 100,000 feet looking straight down", | |
lines=4 | |
) | |
negative_prompt_textbox = gr.Textbox( | |
label="Negative Prompt", | |
visible=False, | |
elem_classes="solid", | |
value="Earth, low quality, bad anatomy, blurry, cropped, worst quality, shadows, people, humans, reflections, shadows, realistic map of the Earth, isometric, text" | |
) | |
prompt_notes_label = gr.Label( | |
"You should use FRM$ as trigger words. @1.5 minutes", | |
elem_classes="solid centered small", | |
show_label=False, | |
visible=False | |
) | |
# Keep the change event to maintain functionality | |
map_options.change( | |
fn=update_prompt_visibility, | |
inputs=[map_options], | |
outputs=[prompt_textbox, negative_prompt_textbox, prompt_notes_label] | |
) | |
with gr.Row(): | |
generate_input_image = gr.Button( | |
"Generate from Input Image & Options ", | |
elem_id="generate_input_image", | |
elem_classes="solid" | |
) | |
with gr.Column(scale=2): | |
with gr.Accordion("Template Images", open = False): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
# Gallery from PRE_RENDERED_IMAGES GOES HERE | |
prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images_by_quality(3,'thumbnail'), elem_id="gallery", elem_classes="solid", type="filepath", columns=[3], rows=[3], preview=False ,object_fit="contain", height="auto", format="png",allow_preview=False) | |
with gr.Column(): | |
image_guidance_stength = gr.Slider(label="Image Guidance Strength (prompt percentage)", minimum=0, maximum=1.0, value=0.85, step=0.01, interactive=True) | |
replace_input_image_button = gr.Button( | |
"Replace Input Image", | |
elem_id="prerendered_replace_input_image_button", | |
elem_classes="solid" | |
) | |
generate_input_image_from_gallery = gr.Button( | |
"Generate AI Image from Template Image & Options", | |
elem_id="generate_input_image_from_gallery", | |
elem_classes="solid" | |
) | |
with gr.Accordion("Advanced Hexagon Settings", open = False): | |
with gr.Row(): | |
start_x = gr.Number(label="Start X", value=20, minimum=-512, maximum= 512, precision=0) | |
start_y = gr.Number(label="Start Y", value=20, minimum=-512, maximum= 512, precision=0) | |
end_x = gr.Number(label="End X", value=-20, minimum=-512, maximum= 512, precision=0) | |
end_y = gr.Number(label="End Y", value=-20, minimum=-512, maximum= 512, precision=0) | |
with gr.Row(): | |
x_spacing = gr.Number(label="Adjust Horizontal spacing", value=-8, minimum=-200, maximum=200, precision=1) | |
y_spacing = gr.Number(label="Adjust Vertical spacing", value=3, minimum=-200, maximum=200, precision=1) | |
with gr.Row(): | |
rotation = gr.Slider(-90, 180, 0.0, 0.1, label="Hexagon Rotation (degree)") | |
add_hex_text = gr.Dropdown(label="Add Text to Hexagons", choices=[None, "Row-Column Coordinates", "Sequential Numbers", "Playing Cards Sequential", "Playing Cards Alternate Red and Black", "Custom List"], value=None) | |
with gr.Row(): | |
custom_text_list = gr.TextArea(label="Custom Text List", value=constants.cards_alternating, visible=False,) | |
custom_text_color_list = gr.TextArea(label="Custom Text Color List", value=constants.card_colors_alternating, visible=False) | |
with gr.Row(): | |
hex_text_info = gr.Markdown(""" | |
### Text Color uses the Border Color and Border Opacity, unless you use a custom list. | |
### The Custom Text List and Custom Text Color List are comma separated lists. | |
### The custom color list is a comma separated list of hex colors. | |
#### Example: "A,2,3,4,5,6,7,8,9,10,J,Q,K", "red,#0000FF,#00FF00,red,#FFFF00,#00FFFF,#FF8000,#FF00FF,#FF0080,#FF8000,#FF0080,lightblue" | |
""", elem_id="hex_text_info", visible=False) | |
add_hex_text.change( | |
fn=lambda x: ( | |
gr.update(visible=(x == "Custom List")), | |
gr.update(visible=(x == "Custom List")), | |
gr.update(visible=(x != None)) | |
), | |
inputs=add_hex_text, | |
outputs=[custom_text_list, custom_text_color_list, hex_text_info] | |
) | |
with gr.Row(): | |
hex_size = gr.Number(label="Hexagon Size", value=90, minimum=1, maximum=768) | |
border_size = gr.Slider(-5,25,value=2,step=1,label="Border Size") | |
with gr.Row(): | |
background_color = gr.ColorPicker(label="Background Color", value="#000000", interactive=True) | |
background_opacity = gr.Slider(0,100,0,1,label="Background Opacity %") | |
border_color = gr.ColorPicker(label="Border Color", value="#7b7b7b", interactive=True) | |
border_opacity = gr.Slider(0,100,50,1,label="Border Opacity %") | |
with gr.Row(): | |
hex_button = gr.Button("Generate Hex Grid!", elem_classes="solid", elem_id="btn-generate") | |
with gr.Row(): | |
output_image = gr.Image(label="Hexagon Grid Image", image_mode = "RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOutput",interactive=True) | |
overlay_image = gr.Image(label="Hexagon Overlay Image", image_mode = "RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgOverlay",interactive=True) | |
with gr.Row(): | |
output_overlay_composite = gr.Slider(0,100,50,0.5, label="Interpolate Intensity") | |
output_blend_multiply_composite = gr.Slider(0,100,50,0.5, label="Overlay Intensity") | |
output_alpha_composite = gr.Slider(0,100,50,0.5, label="Alpha Composite Intensity") | |
with gr.Accordion("Add Margins (bleed)", open=False): | |
with gr.Row(): | |
border_image_source = gr.Radio(label="Add Margins around which Image", choices=["Input Image", "Overlay Image"], value="Overlay Image") | |
with gr.Row(): | |
mask_width = gr.Number(label="Margins Width", value=10, minimum=0, maximum=100, precision=0) | |
mask_height = gr.Number(label="Margins Height", value=10, minimum=0, maximum=100, precision=0) | |
with gr.Row(): | |
margin_color = gr.ColorPicker(label="Margin Color", value="#333333FF", interactive=True) | |
margin_opacity = gr.Slider(0,100,95,0.5,label="Margin Opacity %") | |
with gr.Row(): | |
add_border_button = gr.Button("Add Margins", elem_classes="solid", variant="secondary") | |
with gr.Row(): | |
bordered_image_output = gr.Image(label="Image with Margins", image_mode="RGBA", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="ImgBordered",interactive=False, show_download_button=True, show_fullscreen_button=True, show_share_button=True) | |
with gr.Accordion("Height Maps and 3D", open=False): | |
with gr.Row(): | |
with gr.Column(): | |
# Use standard seed settings only | |
seed_3d = gr.Slider(0, constants.MAX_SEED, label="Seed (3D Generation)", value=0, step=1, randomize=True) | |
randomize_seed_3d = gr.Checkbox(label="Randomize Seed (3D Generation)", value=True) | |
with gr.Column(): | |
depth_image_source = gr.Radio( | |
label="Depth Image Source", | |
choices=["Input Image", "Output Image", "Overlay Image", "Image with Margins"], | |
value="Input Image" | |
) | |
with gr.Row(): | |
generate_3d_asset_button = gr.Button("Generate 3D Asset", elem_classes="solid", variant="secondary") | |
with gr.Row(): | |
# For display: video output and 3D model preview (GLTF) | |
video_output = gr.Video(label="3D Asset Video", autoplay=True, loop=True, height=400) | |
with gr.Row(): | |
depth_output = gr.Image(label="Depth Map", image_mode="L", elem_classes="centered solid imgcontainer", format="PNG", type="filepath", key="DepthOutput",interactive=False, show_download_button=True, show_fullscreen_button=True, show_share_button=True) | |
with gr.Accordion("GLB Extraction Settings", open=False): | |
with gr.Row(): | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
with gr.Row(): | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
extract_gaussian_btn = gr.Button("Extract Gaussian", interactive=False) | |
with gr.Row(): | |
model_output = gr.Model3D(label="Extracted 3D Model", clear_color=[1.0, 1.0, 1.0, 1.0], | |
elem_classes="centered solid imgcontainer", interactive=True) | |
model_file = gr.File(label="3D GLTF", elem_classes="solid small centered") | |
is_multiimage = gr.State(False) | |
output_buf = gr.State() | |
with gr.Row(): | |
gr.Examples(examples=[ | |
["assets//examples//hex_map_p1.png", False, True, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 15], | |
["assets//examples//hex_map_p1_overlayed.png", False, False, -32,-31,80,80,-1.8,0,35,0,1,"#FFD0D0", 75], | |
["assets//examples//hex_flower_logo.png", False, True, -95,-95,100,100,-24,-2,190,30,2,"#FF8951", 50], | |
["assets//examples//hexed_fract_1.png", False, True, 0,0,0,0,0,0,10,0,0,"#000000", 5], | |
["assets//examples//tmpzt3mblvk.png", False, True, -20,10,0,0,-6,-2,35,30,1,"#ffffff", 0], | |
], | |
inputs=[input_image, filter_color, fill_hex, start_x, start_y, end_x, end_y, x_spacing, y_spacing, hex_size, rotation, border_size, border_color, border_opacity], | |
elem_id="examples") | |
# with gr.Row(): | |
# login_button = gr.LoginButton(size="sm", elem_classes="solid centered", elem_id="hf_login_btn") | |
with gr.Row(): | |
gr.HTML(value=getVersions(), visible=True, elem_id="versions") | |
# Handlers | |
hexaGrid.load(start_session) | |
hexaGrid.unload(end_session) | |
color_display.select(on_color_display_select,inputs=[color_display], outputs=[selected_row]) | |
color_display.input(on_input,inputs=[color_display], outputs=[color_display, gr.State(excluded_color_list)]) | |
delete_button.click(fn=delete_color, inputs=[selected_row, color_display], outputs=[color_display]) | |
exclude_color_button.click(fn=add_color, inputs=[color_picker, gr.State(excluded_color_list)], outputs=[color_display, gr.State(excluded_color_list)]) | |
hex_button.click( | |
fn=lambda hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list: | |
gr.Warning("Please upload an Input Image to get started.") if input_image is None else hex_create(hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list), | |
inputs=[hex_size, border_size, input_image, start_x, start_y, end_x, end_y, rotation, background_color, background_opacity, border_color, border_opacity, fill_hex, color_display, filter_color, x_spacing, y_spacing, add_hex_text, custom_text_list, custom_text_color_list], | |
outputs=[output_image, overlay_image], | |
scroll_to_output=True | |
) | |
generate_input_image.click( | |
fn=generate_input_image_click, | |
inputs=[input_image,map_options, prompt_textbox, negative_prompt_textbox, model_textbox, randomize_seed, seed_slider, gr.State(False), gr.State(0.5), image_size_ratio], | |
outputs=[input_image, seed_slider], scroll_to_output=True | |
) | |
model_textbox.change( | |
fn=update_prompt_notes, | |
inputs=model_textbox, | |
outputs=prompt_notes_label,preprocess=False | |
) | |
model_options.change( | |
fn=lambda x: (gr.update(visible=(x == "Manual Entry")), gr.update(value=x) if x != "Manual Entry" else gr.update()), | |
inputs=model_options, | |
outputs=[model_textbox, model_textbox] | |
) | |
model_options.change( | |
fn=update_prompt_notes, | |
inputs=model_options, | |
outputs=prompt_notes_label | |
) | |
composite_button.click( | |
fn=lambda input_image, composite_color, composite_opacity: gr.Warning("Please upload an Input Image to get started.") if input_image is None else change_color(input_image, composite_color, composite_opacity), | |
inputs=[input_image, composite_color, composite_opacity], | |
outputs=[input_image] | |
) | |
#use conditioned_image as the input_image for generate_input_image_click | |
generate_input_image_from_gallery.click( | |
fn=generate_input_image_click, | |
inputs=[input_image, map_options, prompt_textbox, negative_prompt_textbox, model_textbox,randomize_seed, seed_slider, gr.State(True), image_guidance_stength, image_size_ratio], | |
outputs=[input_image, seed_slider], scroll_to_output=True | |
) | |
# Update the state variable with the prerendered image filepath when an image is selected | |
prerendered_image_gallery.select( | |
fn=on_prerendered_gallery_selection, | |
inputs=None, | |
outputs=[gr.State(current_prerendered_image)], # Update the state with the selected image | |
show_api=False | |
) | |
# replace input image with selected gallery image | |
replace_input_image_button.click( | |
lambda: current_prerendered_image.value, | |
inputs=None, | |
outputs=[input_image], scroll_to_output=True | |
) | |
output_overlay_composite.change( | |
fn=combine_images_with_lerp, | |
inputs=[input_image, output_image, output_overlay_composite], | |
outputs=[overlay_image], scroll_to_output=True | |
) | |
output_blend_multiply_composite.change( | |
fn=multiply_and_blend_images, | |
inputs=[input_image, output_image, output_blend_multiply_composite], | |
outputs=[overlay_image], | |
scroll_to_output=True | |
) | |
output_alpha_composite.change( | |
fn=alpha_composite_with_control, | |
inputs=[input_image, output_image, output_alpha_composite], | |
outputs=[overlay_image], | |
scroll_to_output=True | |
) | |
add_border_button.click( | |
fn=lambda image_source, mask_w, mask_h, color, opacity, input_img, overlay_img: add_border(input_img if image_source == "Input Image" else overlay_img, mask_w, mask_h, update_color_opacity(detect_color_format(color), opacity * 2.55)), | |
inputs=[border_image_source, mask_width, mask_height, margin_color, margin_opacity, input_image, overlay_image], | |
outputs=[bordered_image_output], | |
scroll_to_output=True | |
) | |
# 3D Generation | |
# generate_depth_button.click( | |
# fn=generate_depth_button_click, | |
# inputs=[depth_image_source, resized_width_slider, z_scale_slider, input_image, output_image, overlay_image, bordered_image_output], | |
# outputs=[depth_map_output, model_output, model_file], scroll_to_output=True | |
# ) | |
# Chain the buttons | |
generate_3d_asset_button.click( | |
fn=generate_3d_asset, | |
inputs=[depth_image_source, randomize_seed_3d, seed_3d, input_image, output_image, overlay_image, bordered_image_output], | |
outputs=[output_buf, video_output, depth_output], | |
scroll_to_output=True | |
).then( | |
lambda: (gr.Button(interactive=True), gr.Button(interactive=True)), | |
outputs=[extract_glb_btn, extract_gaussian_btn] | |
) | |
# Extraction callbacks remain unchanged from previous behavior | |
extract_glb_btn.click( | |
fn=extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], | |
outputs=[model_output, model_file] | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[model_file] | |
) | |
extract_gaussian_btn.click( | |
fn=extract_gaussian, | |
inputs=[output_buf], | |
outputs=[model_output, model_file] | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[model_file] | |
) | |
if __name__ == "__main__": | |
constants.load_env_vars(constants.dotenv_path) | |
logging.basicConfig( | |
format="[%(levelname)s] %(asctime)s %(message)s", level=logging.INFO | |
) | |
logging.info("Environment Variables: %s" % os.environ) | |
# if _get_output(["nvcc", "--version"]) is None: | |
# logging.info("Installing CUDA toolkit...") | |
# install_cuda_toolkit() | |
# else: | |
# logging.info("Detected CUDA: %s" % _get_output(["nvcc", "--version"])) | |
# logging.info("Installing CUDA extensions...") | |
# setup_runtime_env() | |
#main(os.getenv("DEBUG") == "1") | |
#main() | |
#-------------- ------------------------------------------------MODEL INITIALIZATION------------------------------------------------------------# | |
# Load models once during module import | |
TRELLIS_PIPELINE = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
TRELLIS_PIPELINE.cuda() | |
try: | |
TRELLIS_PIPELINE.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg | |
except: | |
pass | |
hexaGrid.queue(default_concurrency_limit=1,max_size=12,api_open=False) | |
hexaGrid.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered", 'e:/TMP'], favicon_path="./assets/favicon.ico", max_file_size="10mb") | |