#refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb #huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main import gradio as gr from openai import OpenAI import os ACCESS_TOKEN = os.getenv("myHFtoken") print("Access token loaded.") client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) print("Client initialized.") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, model_name, # New parameter for model selection ): print(f"Received message: {message}") print(f"History: {history}") print(f"System message: {system_message}") print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") print(f"Selected model: {model_name}") messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) print(f"Added user message to context: {val[0]}") if val[1]: messages.append({"role": "assistant", "content": val[1]}) print(f"Added assistant message to context: {val[1]}") messages.append({"role": "user", "content": message}) response = "" print("Sending request to OpenAI API.") for message in client.chat.completions.create( model=model_name, # Use the selected model max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, messages=messages, ): token = message.choices[0].delta.content print(f"Received token: {token}") response += token yield response print("Completed response generation.") chatbot = gr.Chatbot(height=600) print("Chatbot interface created.") # Define the list of models models = [ "PowerInfer/SmallThinker-3B-Preview", #OK "Qwen/QwQ-32B-Preview", #OK "Qwen/Qwen2.5-Coder-32B-Instruct", #OK "meta-llama/Llama-3.2-3B-Instruct", #OK #"Qwen/Qwen2.5-32B-Instruct", #fail, too large #"microsoft/Phi-3-mini-128k-instruct", #fail #"microsoft/Phi-3-medium-128k-instruct", #fail #"microsoft/phi-4", #fail, too large to be loaded automatically (29GB > 10GB) #"meta-llama/Llama-3.3-70B-Instruct", #fail, need HF Pro subscription ] # Add a title and move the model dropdown to the top with gr.Blocks() as demo: gr.Markdown("# LLM Test (HF API)") # Add a title to the top of the UI # Add the model dropdown above the chatbot model_dropdown = gr.Dropdown(choices=models, value=models[0], label="Select Model") # Use the existing ChatInterface gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="", label="System message"), gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P", ), model_dropdown, # Pass the dropdown as an additional input ], fill_height=True, chatbot=chatbot, ) print("Gradio interface initialized.") if __name__ == "__main__": print("Launching the demo application.") demo.launch()