Spaces:
Running
Running
#refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb | |
#huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main | |
import gradio as gr | |
from openai import OpenAI | |
import os | |
ACCESS_TOKEN = os.getenv("myHFtoken") | |
print("Access token loaded.") | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("Client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
model_name, # New parameter for model selection | |
): | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Selected model: {model_name}") | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
print(f"Added user message to context: {val[0]}") | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
print(f"Added assistant message to context: {val[1]}") | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
print("Sending request to OpenAI API.") | |
for message in client.chat.completions.create( | |
model=model_name, # Use the selected model | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
messages=messages, | |
): | |
token = message.choices[0].delta.content | |
print(f"Received token: {token}") | |
response += token | |
yield response | |
print("Completed response generation.") | |
chatbot = gr.Chatbot(height=600) | |
print("Chatbot interface created.") | |
# Define the list of models | |
models = [ | |
"PowerInfer/SmallThinker-3B-Preview", #OK | |
"Qwen/QwQ-32B-Preview", #OK | |
"Qwen/Qwen2.5-Coder-32B-Instruct", #OK | |
"meta-llama/Llama-3.2-3B-Instruct", #OK | |
#"Qwen/Qwen2.5-32B-Instruct", #fail, too large | |
#"microsoft/Phi-3-mini-128k-instruct", #fail | |
#"microsoft/Phi-3-medium-128k-instruct", #fail | |
#"microsoft/phi-4", #fail, too large to be loaded automatically (29GB > 10GB) | |
#"meta-llama/Llama-3.3-70B-Instruct", #fail, need HF Pro subscription | |
] | |
# Add a title and move the model dropdown to the top | |
with gr.Blocks() as demo: | |
gr.Markdown("# LLM Test (HF API)") # Add a title to the top of the UI | |
# Add the model dropdown above the chatbot | |
model_dropdown = gr.Dropdown(choices=models, value=models[0], label="Select Model") | |
# Use the existing ChatInterface | |
gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="", label="System message"), | |
gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-P", | |
), | |
model_dropdown, # Pass the dropdown as an additional input | |
], | |
fill_height=True, | |
chatbot=chatbot, | |
) | |
print("Gradio interface initialized.") | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch() | |