|
import torch, torchvision |
|
from torchvision import transforms |
|
import numpy as np |
|
import gradio as gr |
|
from PIL import Image |
|
from pytorch_grad_cam import GradCAM |
|
from pytorch_grad_cam.utils.image import show_cam_on_image |
|
from model.network import ResNet18 |
|
import matplotlib.pyplot as plt |
|
import PIL |
|
import io |
|
from PIL import Image |
|
|
|
|
|
from model.network import * |
|
from utils.gradio_utils import * |
|
from augment.augment import * |
|
from dataset.dataset import * |
|
|
|
|
|
|
|
|
|
model = ResNet18.load_from_checkpoint("resnet18.ckpt", map_location=torch.device("cpu")) |
|
|
|
dataloader_args = dict(shuffle=True, batch_size=64) |
|
_, test_transforms = get_transforms(mu, std) |
|
|
|
test = CIFAR10Dataset(transform=test_transforms, train=False) |
|
test_loader = torch.utils.data.DataLoader(test, **dataloader_args) |
|
|
|
target_layers = [model.res_block2.conv[-1]] |
|
targets = None |
|
device = torch.device("cpu") |
|
|
|
examples = get_examples() |
|
|
|
def upload_image_inference(input_img, n_top_classes, transparency): |
|
|
|
org_img = input_img.copy() |
|
|
|
input_img = test_transforms(image=org_img)['image'] |
|
input_img = input_img.unsqueeze(0) |
|
|
|
outputs = model(input_img) |
|
|
|
softmax = torch.nn.Softmax(dim=0) |
|
o = softmax(outputs.flatten()) |
|
confidences = {classes[i]: float(o[i]) for i in range(n_top_classes)} |
|
_, prediction = torch.max(outputs, 1) |
|
|
|
cam = GradCAM(model=model, target_layers=target_layers) |
|
|
|
grayscale_cam = cam(input_tensor=input_img, targets=None) |
|
grayscale_cam = grayscale_cam[0, :] |
|
img = input_img.squeeze(0) |
|
img = inv_normalize(img) |
|
|
|
rgb_img = np.transpose(img.cpu(), (1, 2, 0)) |
|
rgb_img = rgb_img.numpy() |
|
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency) |
|
|
|
return([confidences, [org_img, grayscale_cam, visualization]]) |
|
|
|
|
|
def misclass_gr(num_images, layer_val, transparency, isview): |
|
images_list = misclassified_data[:num_images] |
|
|
|
images_list = [image_to_array(img, layer_val, isview, transparency) for img in images_list] |
|
return(images_list) |
|
|
|
|
|
def class_gr(num_images, layer_val, transparency, isview): |
|
images_list = classified_data[:num_images] |
|
|
|
images_list = [image_to_array(img, layer_val, isview, transparency) for img in images_list] |
|
return(images_list) |
|
|
|
|
|
def image_to_array(input_img, layer_val, isview, transparency=0.6): |
|
input_tensor = input_img[0] |
|
|
|
cam = GradCAM(model=model, target_layers=[model.res_block2.conv[-layer_val]]) |
|
grayscale_cam = cam(input_tensor=input_tensor, targets=targets) |
|
grayscale_cam = grayscale_cam[0, :] |
|
|
|
img = input_tensor.squeeze(0) |
|
img = inv_normalize(img) |
|
rgb_img = np.transpose(img, (1, 2, 0)) |
|
rgb_img = rgb_img.numpy() |
|
|
|
visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, |
|
image_weight=transparency) |
|
|
|
if isview: |
|
plt.imshow(visualization) |
|
else: |
|
plt.imshow(rgb_img) |
|
|
|
plt.title(r"Correct: " + classes[input_img[1].item()] + '\n' + 'Output: ' + classes[input_img[2].item()]) |
|
|
|
with io.BytesIO() as buffer: |
|
plt.savefig(buffer, format = "png") |
|
buffer.seek(0) |
|
image = Image.open(buffer) |
|
ar = np.asarray(image) |
|
|
|
return(ar) |
|
|
|
|
|
def get_misclassified_data(model, device, test_loader): |
|
""" |
|
Function to run the model on test set and return misclassified images |
|
:param model: Network Architecture |
|
:param device: CPU/GPU |
|
:param test_loader: DataLoader for test set |
|
""" |
|
mis_count = 0 |
|
correct_count = 0 |
|
|
|
|
|
model.eval() |
|
|
|
misclassified_data, classified_data = [], [] |
|
|
|
with torch.no_grad(): |
|
|
|
for data, target in test_loader: |
|
|
|
data, target = data.to(device), target.to(device) |
|
|
|
for image, label in zip(data, target): |
|
|
|
image = image.unsqueeze(0) |
|
|
|
output = model(image) |
|
|
|
pred = output.argmax(dim=1, keepdim=True) |
|
|
|
if pred != label: |
|
misclassified_data.append((image, label, pred)) |
|
mis_count += 1 |
|
else: |
|
classified_data.append((image, label, pred)) |
|
correct_count += 1 |
|
|
|
if ((mis_count>=20) and (correct_count>=20)): |
|
return ((classified_data, misclassified_data)) |
|
|
|
|
|
title = "CIFAR10 trained on ResNet18 (Pytorch Lightning) Model with GradCAM " |
|
description = "A simple Gradio interface to infer on ResNet model, get GradCAM results for existing & new Images" |
|
|
|
with gr.Blocks() as gradcam: |
|
classified_data, misclassified_data = get_misclassified_data(model, device, test_loader) |
|
|
|
gr.Markdown("Make Grad-Cam of uploaded image, or existing images.") |
|
with gr.Tab("Upload New Image"): |
|
upload_input = [gr.Image(shape=(32, 32)), |
|
gr.Number(minimum=0, maximum=10, label='n Top Classes', value=3, precision=0), |
|
gr.Slider(0, 1, label='Transparency', value=0.6)] |
|
|
|
upload_output = [gr.Label(label='Top Classes'), |
|
gr.Gallery(label="Image | CAM | Image+CAM", |
|
show_label=True, min_width=80).style(columns=[3], |
|
rows=[1], |
|
object_fit="contain", |
|
height="auto")] |
|
button1 = gr.Button("Perform Inference") |
|
gr.Examples( |
|
examples=examples, |
|
inputs=upload_input, |
|
outputs=upload_output, |
|
fn=upload_image_inference, |
|
cache_examples=True, |
|
) |
|
|
|
|
|
with gr.Tab("View Class Activate Maps"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
cam_input21 = [gr.Number(minimum=1, maximum=20, precision=0, value=3, label='View Correctly Classified CAM | Num Images'), |
|
gr.Number(minimum=1, maximum=3, precision=0, value=1, label='(-) Target Layer'), |
|
gr.Slider(0, 1, value=0.6, label='Transparency'), |
|
gr.Checkbox(label="GradCAM", value=True, info="View GradCAM ?")] |
|
|
|
image_output21 = gr.Gallery(label="Images - Grad-CAM (correct)", |
|
show_label=True, min_width=80) |
|
button21 = gr.Button("View Images") |
|
|
|
with gr.Column(): |
|
cam_input22 = [gr.Number(minimum=1, maximum=20, precision=0, value=3, label='View Misclassified CAM | Num Images'), |
|
gr.Number(minimum=1, maximum=3, precision=0, value=1, label='(-) Target Layer'), |
|
gr.Slider(0, 1, value=0.6, label='Transparency'), |
|
gr.Checkbox(label="GradCAM", value=True, info="View GradCAM ?")] |
|
|
|
image_output22 = gr.Gallery(label="Images - Grad-CAM (Misclassified)", |
|
show_label=True, min_width=80) |
|
button22 = gr.Button("View Images") |
|
|
|
button1.click(upload_image_inference, inputs=upload_input, outputs=upload_output) |
|
button21.click(class_gr, inputs=cam_input21, outputs=image_output21) |
|
button22.click(misclass_gr, inputs=cam_input22, outputs=image_output22) |
|
|
|
|
|
|
|
gradcam.launch() |
|
|