Init leaderboard
Browse files- Dockerfile +12 -0
- README.md +5 -6
- app.py +288 -0
- requirements.txt +6 -0
- results/Bgym-GPT-3.5/README.md +1 -0
- results/Bgym-GPT-3.5/config.json +4 -0
- results/Bgym-GPT-3.5/miniwob.json +16 -0
- results/Bgym-GPT-3.5/results.json +53 -0
- results/Bgym-GPT-3.5/webarena.json +16 -0
- results/Bgym-GPT-3.5/workarena++-l2.json +16 -0
- results/Bgym-GPT-3.5/workarena++-l3.json +16 -0
- results/Bgym-GPT-3.5/workarena-l1.json +44 -0
- results/Bgym-GPT-4o-V/README.md +1 -0
- results/Bgym-GPT-4o-V/config.json +4 -0
- results/Bgym-GPT-4o-V/miniwob.json +16 -0
- results/Bgym-GPT-4o-V/results.json +52 -0
- results/Bgym-GPT-4o-V/webarena.json +16 -0
- results/Bgym-GPT-4o-V/workarena++-l2.json +16 -0
- results/Bgym-GPT-4o-V/workarena++-l3.json +16 -0
- results/Bgym-GPT-4o-V/workarena-l1.json +16 -0
- results/Bgym-GPT-4o/README.md +1 -0
- results/Bgym-GPT-4o/config.json +4 -0
- results/Bgym-GPT-4o/miniwob.json +16 -0
- results/Bgym-GPT-4o/results.json +52 -0
- results/Bgym-GPT-4o/webarena.json +16 -0
- results/Bgym-GPT-4o/workarena++-l2.json +16 -0
- results/Bgym-GPT-4o/workarena++-l3.json +16 -0
- results/Bgym-GPT-4o/workarena-l1.json +16 -0
- results/Bgym-Llama-3-70b/README.md +1 -0
- results/Bgym-Llama-3-70b/config.json +4 -0
- results/Bgym-Llama-3-70b/miniwob.json +16 -0
- results/Bgym-Llama-3-70b/results.json +52 -0
- results/Bgym-Llama-3-70b/webarena.json +16 -0
- results/Bgym-Llama-3-70b/workarena++-l2.json +16 -0
- results/Bgym-Llama-3-70b/workarena++-l3.json +16 -0
- results/Bgym-Llama-3-70b/workarena-l1.json +58 -0
- results/Bgym-Mixtral-8x22b/README.md +1 -0
- results/Bgym-Mixtral-8x22b/config.json +4 -0
- results/Bgym-Mixtral-8x22b/miniwob.json +16 -0
- results/Bgym-Mixtral-8x22b/results.json +52 -0
- results/Bgym-Mixtral-8x22b/webarena.json +16 -0
- results/Bgym-Mixtral-8x22b/workarena++-l2.json +16 -0
- results/Bgym-Mixtral-8x22b/workarena++-l3.json +16 -0
- results/Bgym-Mixtral-8x22b/workarena-l1.json +44 -0
Dockerfile
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
COPY ./app.py /code/app.py
|
7 |
+
COPY ./results.json /code/results.json
|
8 |
+
COPY ./results /code/results
|
9 |
+
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
11 |
+
|
12 |
+
CMD ["streamlit", "run", "/code/app.py", "--server.address", "0.0.0.0", "--server.port", "7860"]
|
README.md
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
-
license:
|
9 |
-
short_description: Leaderboard to track the progress of agents on web tasks
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: WebAgent Leaderboard
|
3 |
+
emoji: 🐠
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: green
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
+
license: mit
|
|
|
9 |
---
|
10 |
|
11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import re
|
3 |
+
import os
|
4 |
+
import streamlit as st
|
5 |
+
import requests
|
6 |
+
import pandas as pd
|
7 |
+
from io import StringIO
|
8 |
+
import plotly.graph_objs as go
|
9 |
+
from huggingface_hub import HfApi
|
10 |
+
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
|
11 |
+
import streamlit.components.v1 as components
|
12 |
+
|
13 |
+
# BENCHMARKS = ["WorkArena-L1", "WorkArena++-L2", "WorkArena++-L3", "MiniWoB", "WebArena"]
|
14 |
+
BENCHMARKS = ["WebArena", "WorkArena-L1", "WorkArena++-L2", "WorkArena++-L3", "MiniWoB",]
|
15 |
+
|
16 |
+
def create_html_table_main(df, benchmarks):
|
17 |
+
col1, col2 = st.columns([2,6])
|
18 |
+
with col1:
|
19 |
+
sort_column = st.selectbox("Sort by", df.columns.tolist())
|
20 |
+
with col2:
|
21 |
+
sort_order = st.radio("Order", ["Ascending", "Descending"], horizontal=True)
|
22 |
+
|
23 |
+
# Sort dataframe
|
24 |
+
if sort_order == "Ascending":
|
25 |
+
df = df.sort_values(by=sort_column)
|
26 |
+
else:
|
27 |
+
df = df.sort_values(by=sort_column, ascending=False)
|
28 |
+
|
29 |
+
# Create HTML table without JavaScript sorting
|
30 |
+
html = '''
|
31 |
+
<style>
|
32 |
+
table {
|
33 |
+
width: 100%;
|
34 |
+
border-collapse: collapse;
|
35 |
+
}
|
36 |
+
th, td {
|
37 |
+
border: 1px solid #ddd;
|
38 |
+
padding: 8px;
|
39 |
+
text-align: center;
|
40 |
+
}
|
41 |
+
th {
|
42 |
+
font-weight: bold;
|
43 |
+
}
|
44 |
+
.table-container {
|
45 |
+
padding-bottom: 20px;
|
46 |
+
}
|
47 |
+
</style>
|
48 |
+
'''
|
49 |
+
html += '<div class="table-container">'
|
50 |
+
html += '<table>'
|
51 |
+
html += '<thead><tr>'
|
52 |
+
for column in df.columns:
|
53 |
+
html += f'<th>{column}</th>'
|
54 |
+
html += '</tr></thead>'
|
55 |
+
html += '<tbody>'
|
56 |
+
for _, row in df.iterrows():
|
57 |
+
html += '<tr>'
|
58 |
+
for col in df.columns:
|
59 |
+
html += f'<td>{row[col]}</td>'
|
60 |
+
html += '</tr>'
|
61 |
+
html += '</tbody></table>'
|
62 |
+
html += '</div>'
|
63 |
+
return html
|
64 |
+
|
65 |
+
def create_html_table_benchmark(df, benchmarks):
|
66 |
+
# Create HTML table without JavaScript sorting
|
67 |
+
html = '''
|
68 |
+
<style>
|
69 |
+
table {
|
70 |
+
width: 100%;
|
71 |
+
border-collapse: collapse;
|
72 |
+
}
|
73 |
+
th, td {
|
74 |
+
border: 1px solid #ddd;
|
75 |
+
padding: 8px;
|
76 |
+
text-align: center;
|
77 |
+
}
|
78 |
+
th {
|
79 |
+
font-weight: bold;
|
80 |
+
}
|
81 |
+
.table-container {
|
82 |
+
padding-bottom: 20px;
|
83 |
+
}
|
84 |
+
</style>
|
85 |
+
'''
|
86 |
+
html += '<div class="table-container">'
|
87 |
+
html += '<table>'
|
88 |
+
html += '<thead><tr>'
|
89 |
+
for column in df.columns:
|
90 |
+
if column != "Reproduced_all":
|
91 |
+
html += f'<th>{column}</th>'
|
92 |
+
html += '</tr></thead>'
|
93 |
+
html += '<tbody>'
|
94 |
+
for _, row in df.iterrows():
|
95 |
+
html += '<tr>'
|
96 |
+
for column in df.columns:
|
97 |
+
if column == "Reproduced":
|
98 |
+
if row[column] == "-":
|
99 |
+
html += f'<td>{row[column]}</td>'
|
100 |
+
else:
|
101 |
+
html += f'<td><details><summary>{row[column]}</summary>{"<br>".join(map(str, row["Reproduced_all"]))}</details></td>'
|
102 |
+
elif column == "Reproduced_all":
|
103 |
+
continue
|
104 |
+
else:
|
105 |
+
html += f'<td>{row[column]}</td>'
|
106 |
+
html += '</tr>'
|
107 |
+
html += '</tbody></table>'
|
108 |
+
html += '</div>'
|
109 |
+
return html
|
110 |
+
|
111 |
+
def check_sanity(agent):
|
112 |
+
for benchmark in BENCHMARKS:
|
113 |
+
file_path = f"results/{agent}/{benchmark.lower()}.json"
|
114 |
+
if not os.path.exists(file_path):
|
115 |
+
continue
|
116 |
+
original_count = 0
|
117 |
+
with open(file_path) as f:
|
118 |
+
results = json.load(f)
|
119 |
+
for result in results:
|
120 |
+
if not all(key in result for key in ["agent_name", "benchmark", "original_or_reproduced", "score", "std_err", "benchmark_specific", "benchmark_tuned", "followed_evaluation_protocol", "reproducible", "comments", "study_id", "date_time"]):
|
121 |
+
return False
|
122 |
+
if result["agent_name"] != agent:
|
123 |
+
return False
|
124 |
+
if result["benchmark"] != benchmark:
|
125 |
+
return False
|
126 |
+
if result["original_or_reproduced"] == "Original":
|
127 |
+
original_count += 1
|
128 |
+
if original_count != 1:
|
129 |
+
return False
|
130 |
+
return True
|
131 |
+
|
132 |
+
def main():
|
133 |
+
st.set_page_config(page_title="WebAgent Leaderboard", layout="wide")
|
134 |
+
|
135 |
+
all_agents = os.listdir("results")
|
136 |
+
all_results = {}
|
137 |
+
for agent in all_agents:
|
138 |
+
if not check_sanity(agent):
|
139 |
+
st.error(f"Results for {agent} are not in the correct format.")
|
140 |
+
continue
|
141 |
+
agent_results = []
|
142 |
+
for benchmark in BENCHMARKS:
|
143 |
+
with open(f"results/{agent}/{benchmark.lower()}.json") as f:
|
144 |
+
agent_results.extend(json.load(f))
|
145 |
+
all_results[agent] = agent_results
|
146 |
+
|
147 |
+
st.title("🏆 WebAgent Leaderboard")
|
148 |
+
st.markdown("Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.")
|
149 |
+
# content = create_yall()
|
150 |
+
# tab1, tab2, tab3, tab4 = st.tabs(["🏆 WebAgent Leaderboard", "WorkArena++-L2 Leaderboard", "WorkArena++-L3 Leaderboard", "📝 About"])
|
151 |
+
tabs = st.tabs(["🏆 WebAgent Leaderboard",] + BENCHMARKS + ["📝 About"])
|
152 |
+
|
153 |
+
with tabs[0]:
|
154 |
+
# Leaderboard tab
|
155 |
+
def get_leaderboard_dict(results):
|
156 |
+
leaderboard_dict = []
|
157 |
+
for key, values in results.items():
|
158 |
+
result_dict = {"Agent": key}
|
159 |
+
for benchmark in BENCHMARKS:
|
160 |
+
if any(value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original" for value in values):
|
161 |
+
result_dict[benchmark] = [value["score"] for value in values if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original"][0]
|
162 |
+
else:
|
163 |
+
result_dict[benchmark] = "-"
|
164 |
+
leaderboard_dict.append(result_dict)
|
165 |
+
return leaderboard_dict
|
166 |
+
leaderboard_dict = get_leaderboard_dict(all_results)
|
167 |
+
# print (leaderboard_dict)
|
168 |
+
full_df = pd.DataFrame.from_dict(leaderboard_dict)
|
169 |
+
|
170 |
+
df = pd.DataFrame(columns=full_df.columns)
|
171 |
+
dfs_to_concat = []
|
172 |
+
dfs_to_concat.append(full_df)
|
173 |
+
|
174 |
+
# Concatenate the DataFrames
|
175 |
+
if dfs_to_concat:
|
176 |
+
df = pd.concat(dfs_to_concat, ignore_index=True)
|
177 |
+
|
178 |
+
# df['Average'] = sum(df[column] for column in BENCHMARKS)/len(BENCHMARKS)
|
179 |
+
# df['Average'] = df['Average'].round(2)
|
180 |
+
# Sort values
|
181 |
+
df = df.sort_values(by='WebArena', ascending=False)
|
182 |
+
|
183 |
+
# Add a search bar
|
184 |
+
search_query = st.text_input("Search agents", "", key="search_main")
|
185 |
+
|
186 |
+
# Filter the DataFrame based on the search query
|
187 |
+
if search_query:
|
188 |
+
df = df[df['Agent'].str.contains(search_query, case=False)]
|
189 |
+
|
190 |
+
# Display the filtered DataFrame or the entire leaderboard
|
191 |
+
|
192 |
+
def make_hyperlink(agent_name):
|
193 |
+
url = f"https://huggingface.co/spaces/meghsn/WebAgent-Leaderboard/blob/main/results/{agent_name}/README.md"
|
194 |
+
return f'<a href="{url}" target="_blank">{agent_name}</a>'
|
195 |
+
df['Agent'] = df['Agent'].apply(make_hyperlink)
|
196 |
+
# st.dataframe(
|
197 |
+
# df[['Agent'] + BENCHMARKS],
|
198 |
+
# use_container_width=True,
|
199 |
+
# column_config={benchmark: {'alignment': 'center'} for benchmark in BENCHMARKS},
|
200 |
+
# hide_index=True,
|
201 |
+
# # height=int(len(df) * 36.2),
|
202 |
+
# )
|
203 |
+
# st.markdown(df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
204 |
+
html_table = create_html_table_main(df, BENCHMARKS)
|
205 |
+
# print (html_table)
|
206 |
+
st.markdown(html_table, unsafe_allow_html=True)
|
207 |
+
# components.html(html_table, height=600, scrolling=True)
|
208 |
+
|
209 |
+
if st.button("Export to CSV", key="export_main"):
|
210 |
+
# Export the DataFrame to CSV
|
211 |
+
csv_data = df.to_csv(index=False)
|
212 |
+
|
213 |
+
# Create a link to download the CSV file
|
214 |
+
st.download_button(
|
215 |
+
label="Download CSV",
|
216 |
+
data=csv_data,
|
217 |
+
file_name="leaderboard.csv",
|
218 |
+
key="download-csv",
|
219 |
+
help="Click to download the CSV file",
|
220 |
+
)
|
221 |
+
|
222 |
+
with tabs[-1]:
|
223 |
+
st.markdown('''
|
224 |
+
### Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.
|
225 |
+
''')
|
226 |
+
for i, benchmark in enumerate(BENCHMARKS, start=1):
|
227 |
+
with tabs[i]:
|
228 |
+
def get_benchmark_dict(results, benchmark):
|
229 |
+
benchmark_dict = []
|
230 |
+
for key, values in results.items():
|
231 |
+
result_dict = {"Agent": key}
|
232 |
+
flag = 0
|
233 |
+
for value in values:
|
234 |
+
if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original":
|
235 |
+
result_dict["Score"] = value["score"]
|
236 |
+
result_dict["Benchmark Specific"] = value["benchmark_specific"]
|
237 |
+
result_dict["Benchmark Tuned"] = value["benchmark_tuned"]
|
238 |
+
result_dict["Followed Evaluation Protocol"] = value["followed_evaluation_protocol"]
|
239 |
+
result_dict["Reproducible"] = value["reproducible"]
|
240 |
+
result_dict["Comments"] = value["comments"]
|
241 |
+
result_dict["Study ID"] = value["study_id"]
|
242 |
+
result_dict["Date"] = value["date_time"]
|
243 |
+
result_dict["Reproduced"] = []
|
244 |
+
result_dict["Reproduced_all"] = []
|
245 |
+
flag = 1
|
246 |
+
if not flag:
|
247 |
+
result_dict["Score"] = "-"
|
248 |
+
result_dict["Benchmark Specific"] = "-"
|
249 |
+
result_dict["Benchmark Tuned"] = "-"
|
250 |
+
result_dict["Followed Evaluation Protocol"] = "-"
|
251 |
+
result_dict["Reproducible"] = "-"
|
252 |
+
result_dict["Comments"] = "-"
|
253 |
+
result_dict["Study ID"] = "-"
|
254 |
+
result_dict["Date"] = "-"
|
255 |
+
result_dict["Reproduced"] = []
|
256 |
+
result_dict["Reproduced_all"] = []
|
257 |
+
if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Reproduced":
|
258 |
+
result_dict["Reproduced"].append(value["score"])
|
259 |
+
result_dict["Reproduced_all"].append(", ".join([str(value["score"]), str(value["date_time"])]))
|
260 |
+
if result_dict["Reproduced"]:
|
261 |
+
result_dict["Reproduced"] = str(min(result_dict["Reproduced"])) + " - " + str(max(result_dict["Reproduced"]))
|
262 |
+
else:
|
263 |
+
result_dict["Reproduced"] = "-"
|
264 |
+
benchmark_dict.append(result_dict)
|
265 |
+
return benchmark_dict
|
266 |
+
benchmark_dict = get_benchmark_dict(all_results, benchmark=benchmark)
|
267 |
+
# print (leaderboard_dict)
|
268 |
+
full_df = pd.DataFrame.from_dict(benchmark_dict)
|
269 |
+
df_ = pd.DataFrame(columns=full_df.columns)
|
270 |
+
dfs_to_concat = []
|
271 |
+
dfs_to_concat.append(full_df)
|
272 |
+
|
273 |
+
# Concatenate the DataFrames
|
274 |
+
if dfs_to_concat:
|
275 |
+
df_ = pd.concat(dfs_to_concat, ignore_index=True)
|
276 |
+
# st.markdown(f"<h2 id='{benchmark.lower()}'>{benchmark}</h2>", unsafe_allow_html=True)
|
277 |
+
# st.dataframe(
|
278 |
+
# df_,
|
279 |
+
# use_container_width=True,
|
280 |
+
# column_config={benchmark: {'alignment': 'center'}},
|
281 |
+
# hide_index=True,
|
282 |
+
# )
|
283 |
+
html_table = create_html_table_benchmark(df_, BENCHMARKS)
|
284 |
+
st.markdown(html_table, unsafe_allow_html=True)
|
285 |
+
|
286 |
+
|
287 |
+
if __name__ == "__main__":
|
288 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.23
|
2 |
+
pandas
|
3 |
+
requests
|
4 |
+
plotly
|
5 |
+
gistyc
|
6 |
+
huggingface_hub
|
results/Bgym-GPT-3.5/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
## GPT-3.5 model
|
results/Bgym-GPT-3.5/config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"agent_name": "GPT-3.5",
|
3 |
+
"backend_llm": "GPT-3.5"
|
4 |
+
}
|
results/Bgym-GPT-3.5/miniwob.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-3.5",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "MiniWoB",
|
7 |
+
"score": 43.4,
|
8 |
+
"std_err": 0.1,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-GPT-3.5/results.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"benchmark": "WorkArena-L1",
|
4 |
+
"score": 6.1,
|
5 |
+
"std_err": 0.3,
|
6 |
+
"benchmark_specific": "No",
|
7 |
+
"benchmark_tuned": "No",
|
8 |
+
"followed_evaluation_protocol": "Yes",
|
9 |
+
"reproducible": "Yes",
|
10 |
+
"reproduced": [["aug 2025", 0.65, 0.05, "study_id"]],
|
11 |
+
"comments": "NA"
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"benchmark": "WorkArena++-L2",
|
15 |
+
"score": 0.0,
|
16 |
+
"std_err": 0.0,
|
17 |
+
"benchmark_specific": "No",
|
18 |
+
"benchmark_tuned": "No",
|
19 |
+
"followed_evaluation_protocol": "Yes",
|
20 |
+
"reproducible": "Yes",
|
21 |
+
"comments": "NA"
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"benchmark": "WorkArena++-L3",
|
25 |
+
"score": 0.0,
|
26 |
+
"std_err": 0.0,
|
27 |
+
"benchmark_specific": "No",
|
28 |
+
"benchmark_tuned": "No",
|
29 |
+
"followed_evaluation_protocol": "Yes",
|
30 |
+
"reproducible": "Yes",
|
31 |
+
"comments": "NA"
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"benchmark": "MiniWoB",
|
35 |
+
"score": 43.4,
|
36 |
+
"std_err": 0.1,
|
37 |
+
"benchmark_specific": "No",
|
38 |
+
"benchmark_tuned": "No",
|
39 |
+
"followed_evaluation_protocol": "Yes",
|
40 |
+
"reproducible": "Yes",
|
41 |
+
"comments": "NA"
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"benchmark": "WebArena",
|
45 |
+
"score": 6.7,
|
46 |
+
"std_err": 0.2,
|
47 |
+
"benchmark_specific": "No",
|
48 |
+
"benchmark_tuned": "No",
|
49 |
+
"followed_evaluation_protocol": "Yes",
|
50 |
+
"reproducible": "Yes",
|
51 |
+
"comments": "NA"
|
52 |
+
}
|
53 |
+
]
|
results/Bgym-GPT-3.5/webarena.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-3.5",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WebArena",
|
7 |
+
"score": 6.7,
|
8 |
+
"std_err": 0.2,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-GPT-3.5/workarena++-l2.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-3.5",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WorkArena++-L2",
|
7 |
+
"score": 0.0,
|
8 |
+
"std_err": 0.0,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-GPT-3.5/workarena++-l3.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-3.5",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WorkArena++-L3",
|
7 |
+
"score": 0.0,
|
8 |
+
"std_err": 0.0,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-GPT-3.5/workarena-l1.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-3.5",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WorkArena-L1",
|
7 |
+
"score": 6.1,
|
8 |
+
"std_err": 0.3,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"agent_name": "Bgym-GPT-3.5",
|
18 |
+
"study_id": "study_id",
|
19 |
+
"benchmark": "WorkArena-L1",
|
20 |
+
"score": 5.7,
|
21 |
+
"std_err": 0.3,
|
22 |
+
"benchmark_specific": "No",
|
23 |
+
"benchmark_tuned": "No",
|
24 |
+
"followed_evaluation_protocol": "Yes",
|
25 |
+
"reproducible": "Yes",
|
26 |
+
"comments": "NA",
|
27 |
+
"original_or_reproduced": "Reproduced",
|
28 |
+
"date_time": "2021-01-04 12:06:00"
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"benchmark": "WorkArena-L1",
|
32 |
+
"agent_name": "Bgym-GPT-3.5",
|
33 |
+
"study_id": "study_id",
|
34 |
+
"score": 5.1,
|
35 |
+
"std_err": 0.3,
|
36 |
+
"benchmark_specific": "No",
|
37 |
+
"benchmark_tuned": "No",
|
38 |
+
"followed_evaluation_protocol": "Yes",
|
39 |
+
"reproducible": "Yes",
|
40 |
+
"comments": "NA",
|
41 |
+
"original_or_reproduced": "Reproduced",
|
42 |
+
"date_time": "2021-01-04 12:06:00"
|
43 |
+
}
|
44 |
+
]
|
results/Bgym-GPT-4o-V/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
## GPT-4o-V model
|
results/Bgym-GPT-4o-V/config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"agent_name": "GPT-4o-V",
|
3 |
+
"backend_llm": "GPT-4o-V"
|
4 |
+
}
|
results/Bgym-GPT-4o-V/miniwob.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-4o-V",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "MiniWoB",
|
7 |
+
"score": 72.5,
|
8 |
+
"std_err": 0.5,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-GPT-4o-V/results.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"benchmark": "WorkArena-L1",
|
4 |
+
"score": 41.8,
|
5 |
+
"std_err": 0.4,
|
6 |
+
"benchmark_specific": "No",
|
7 |
+
"benchmark_tuned": "No",
|
8 |
+
"followed_evaluation_protocol": "Yes",
|
9 |
+
"reproducible": "Yes",
|
10 |
+
"comments": "NA"
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"benchmark": "WorkArena++-L2",
|
14 |
+
"score": 3.8,
|
15 |
+
"std_err": 0.6,
|
16 |
+
"benchmark_specific": "No",
|
17 |
+
"benchmark_tuned": "No",
|
18 |
+
"followed_evaluation_protocol": "Yes",
|
19 |
+
"reproducible": "Yes",
|
20 |
+
"comments": "NA"
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"benchmark": "WorkArena++-L3",
|
24 |
+
"score": 0.0,
|
25 |
+
"std_err": 0.0,
|
26 |
+
"benchmark_specific": "No",
|
27 |
+
"benchmark_tuned": "No",
|
28 |
+
"followed_evaluation_protocol": "Yes",
|
29 |
+
"reproducible": "Yes",
|
30 |
+
"comments": "NA"
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"benchmark": "MiniWoB",
|
34 |
+
"score": 72.5,
|
35 |
+
"std_err": 0.5,
|
36 |
+
"benchmark_specific": "No",
|
37 |
+
"benchmark_tuned": "No",
|
38 |
+
"followed_evaluation_protocol": "Yes",
|
39 |
+
"reproducible": "Yes",
|
40 |
+
"comments": "NA"
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"benchmark": "WebArena",
|
44 |
+
"score": 24.0,
|
45 |
+
"std_err": 0.4,
|
46 |
+
"benchmark_specific": "No",
|
47 |
+
"benchmark_tuned": "No",
|
48 |
+
"followed_evaluation_protocol": "Yes",
|
49 |
+
"reproducible": "Yes",
|
50 |
+
"comments": "NA"
|
51 |
+
}
|
52 |
+
]
|
results/Bgym-GPT-4o-V/webarena.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-4o-V",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WebArena",
|
7 |
+
"score": 24.0,
|
8 |
+
"std_err": 0.4,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-GPT-4o-V/workarena++-l2.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-4o-V",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WorkArena++-L2",
|
7 |
+
"score": 3.8,
|
8 |
+
"std_err": 0.6,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-GPT-4o-V/workarena++-l3.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-4o-V",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WorkArena++-L3",
|
7 |
+
"score": 0.0,
|
8 |
+
"std_err": 0.0,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-GPT-4o-V/workarena-l1.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-4o-V",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WorkArena-L1",
|
7 |
+
"score": 41.8,
|
8 |
+
"std_err": 0.4,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-GPT-4o/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
## GPT-4o model
|
results/Bgym-GPT-4o/config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"agent_name": "GPT-4o",
|
3 |
+
"backend_llm": "GPT-4o"
|
4 |
+
}
|
results/Bgym-GPT-4o/miniwob.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-4o",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "MiniWoB",
|
7 |
+
"score": 71.3,
|
8 |
+
"std_err": 0.5,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-GPT-4o/results.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"benchmark": "WorkArena-L1",
|
4 |
+
"score": 42.7,
|
5 |
+
"std_err": 0.4,
|
6 |
+
"benchmark_specific": "No",
|
7 |
+
"benchmark_tuned": "No",
|
8 |
+
"followed_evaluation_protocol": "Yes",
|
9 |
+
"reproducible": "Yes",
|
10 |
+
"comments": "NA"
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"benchmark": "WorkArena++-L2",
|
14 |
+
"score": 3.0,
|
15 |
+
"std_err": 0.6,
|
16 |
+
"benchmark_specific": "No",
|
17 |
+
"benchmark_tuned": "No",
|
18 |
+
"followed_evaluation_protocol": "Yes",
|
19 |
+
"reproducible": "Yes",
|
20 |
+
"comments": "NA"
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"benchmark": "WorkArena++-L3",
|
24 |
+
"score": 0.0,
|
25 |
+
"std_err": 0.0,
|
26 |
+
"benchmark_specific": "No",
|
27 |
+
"benchmark_tuned": "No",
|
28 |
+
"followed_evaluation_protocol": "Yes",
|
29 |
+
"reproducible": "Yes",
|
30 |
+
"comments": "NA"
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"benchmark": "MiniWoB",
|
34 |
+
"score": 71.3,
|
35 |
+
"std_err": 0.5,
|
36 |
+
"benchmark_specific": "No",
|
37 |
+
"benchmark_tuned": "No",
|
38 |
+
"followed_evaluation_protocol": "Yes",
|
39 |
+
"reproducible": "Yes",
|
40 |
+
"comments": "NA"
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"benchmark": "WebArena",
|
44 |
+
"score": 23.5,
|
45 |
+
"std_err": 0.4,
|
46 |
+
"benchmark_specific": "No",
|
47 |
+
"benchmark_tuned": "No",
|
48 |
+
"followed_evaluation_protocol": "Yes",
|
49 |
+
"reproducible": "Yes",
|
50 |
+
"comments": "NA"
|
51 |
+
}
|
52 |
+
]
|
results/Bgym-GPT-4o/webarena.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-4o",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WebArena",
|
7 |
+
"score": 23.5,
|
8 |
+
"std_err": 0.4,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-GPT-4o/workarena++-l2.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-4o",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WorkArena++-L2",
|
7 |
+
"score": 3.0,
|
8 |
+
"std_err": 0.6,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-GPT-4o/workarena++-l3.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-4o",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WorkArena++-L3",
|
7 |
+
"score": 0.0,
|
8 |
+
"std_err": 0.0,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-GPT-4o/workarena-l1.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-GPT-4o",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WorkArena-L1",
|
7 |
+
"score": 42.7,
|
8 |
+
"std_err": 0.4,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-Llama-3-70b/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
### Llama-3-70B
|
results/Bgym-Llama-3-70b/config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"agent_name": "Llama-3-70B",
|
3 |
+
"backend_llm": "Llama-3-70B"
|
4 |
+
}
|
results/Bgym-Llama-3-70b/miniwob.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-Llama-3-70b",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "MiniWoB",
|
7 |
+
"score": 68.2,
|
8 |
+
"std_err": 0.7,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-Llama-3-70b/results.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"benchmark": "WorkArena-L1",
|
4 |
+
"score": 17.9,
|
5 |
+
"std_err": 0.6,
|
6 |
+
"benchmark_specific": "No",
|
7 |
+
"benchmark_tuned": "No",
|
8 |
+
"followed_evaluation_protocol": "Yes",
|
9 |
+
"reproducible": "Yes",
|
10 |
+
"comments": "NA"
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"benchmark": "WorkArena++-L2",
|
14 |
+
"score": 0.0,
|
15 |
+
"std_err": 0.0,
|
16 |
+
"benchmark_specific": "No",
|
17 |
+
"benchmark_tuned": "No",
|
18 |
+
"followed_evaluation_protocol": "Yes",
|
19 |
+
"reproducible": "Yes",
|
20 |
+
"comments": "NA"
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"benchmark": "WorkArena++-L3",
|
24 |
+
"score": 0.0,
|
25 |
+
"std_err": 0.0,
|
26 |
+
"benchmark_specific": "No",
|
27 |
+
"benchmark_tuned": "No",
|
28 |
+
"followed_evaluation_protocol": "Yes",
|
29 |
+
"reproducible": "Yes",
|
30 |
+
"comments": "NA"
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"benchmark": "MiniWoB",
|
34 |
+
"score": 68.2,
|
35 |
+
"std_err": 0.7,
|
36 |
+
"benchmark_specific": "No",
|
37 |
+
"benchmark_tuned": "No",
|
38 |
+
"followed_evaluation_protocol": "Yes",
|
39 |
+
"reproducible": "Yes",
|
40 |
+
"comments": "NA"
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"benchmark": "WebArena",
|
44 |
+
"score": 11.0,
|
45 |
+
"std_err": 0.3,
|
46 |
+
"benchmark_specific": "No",
|
47 |
+
"benchmark_tuned": "No",
|
48 |
+
"followed_evaluation_protocol": "Yes",
|
49 |
+
"reproducible": "Yes",
|
50 |
+
"comments": "NA"
|
51 |
+
}
|
52 |
+
]
|
results/Bgym-Llama-3-70b/webarena.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-Llama-3-70b",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WebArena",
|
7 |
+
"score": 11.0,
|
8 |
+
"std_err": 0.3,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-Llama-3-70b/workarena++-l2.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-Llama-3-70b",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WorkArena++-L2",
|
7 |
+
"score": 0.0,
|
8 |
+
"std_err": 0.0,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-Llama-3-70b/workarena++-l3.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-Llama-3-70b",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WorkArena++-L3",
|
7 |
+
"score": 0.0,
|
8 |
+
"std_err": 0.0,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-Llama-3-70b/workarena-l1.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-Llama-3-70b",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"benchmark": "WorkArena-L1",
|
6 |
+
"score": 17.9,
|
7 |
+
"std_err": 0.6,
|
8 |
+
"benchmark_specific": "No",
|
9 |
+
"benchmark_tuned": "No",
|
10 |
+
"followed_evaluation_protocol": "Yes",
|
11 |
+
"reproducible": "Yes",
|
12 |
+
"comments": "NA",
|
13 |
+
"original_or_reproduced": "Original",
|
14 |
+
"date_time": "2021-01-01 12:00:00"
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"agent_name": "Bgym-Llama-3-70b",
|
18 |
+
"study_id": "study_id",
|
19 |
+
"benchmark": "WorkArena-L1",
|
20 |
+
"score": 15.9,
|
21 |
+
"std_err": 0.6,
|
22 |
+
"benchmark_specific": "No",
|
23 |
+
"benchmark_tuned": "No",
|
24 |
+
"followed_evaluation_protocol": "Yes",
|
25 |
+
"reproducible": "Yes",
|
26 |
+
"comments": "NA",
|
27 |
+
"original_or_reproduced": "Reproduced",
|
28 |
+
"date_time": "2021-01-04 12:06:00"
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"agent_name": "Bgym-Llama-3-70b",
|
32 |
+
"study_id": "study_id",
|
33 |
+
"benchmark": "WorkArena-L1",
|
34 |
+
"score": 19.9,
|
35 |
+
"std_err": 0.6,
|
36 |
+
"benchmark_specific": "No",
|
37 |
+
"benchmark_tuned": "No",
|
38 |
+
"followed_evaluation_protocol": "Yes",
|
39 |
+
"reproducible": "Yes",
|
40 |
+
"comments": "NA",
|
41 |
+
"original_or_reproduced": "Reproduced",
|
42 |
+
"date_time": "2021-01-05 2:07:00"
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"agent_name": "Bgym-Llama-3-70b",
|
46 |
+
"study_id": "study_id",
|
47 |
+
"benchmark": "WorkArena-L1",
|
48 |
+
"score": 17.9,
|
49 |
+
"std_err": 0.6,
|
50 |
+
"benchmark_specific": "No",
|
51 |
+
"benchmark_tuned": "No",
|
52 |
+
"followed_evaluation_protocol": "Yes",
|
53 |
+
"reproducible": "Yes",
|
54 |
+
"comments": "NA",
|
55 |
+
"original_or_reproduced": "Reproduced",
|
56 |
+
"date_time": "2021-01-12 12:00:00"
|
57 |
+
}
|
58 |
+
]
|
results/Bgym-Mixtral-8x22b/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
## Mixtral 8x22B
|
results/Bgym-Mixtral-8x22b/config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"agent_name": "Mixtral-8x22B",
|
3 |
+
"backend_llm": "Mixtral-8x22B"
|
4 |
+
}
|
results/Bgym-Mixtral-8x22b/miniwob.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-Mixtral-8x22b",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "MiniWoB",
|
7 |
+
"score": 62.4,
|
8 |
+
"std_err": 0.5,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-Mixtral-8x22b/results.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"benchmark": "WorkArena-L1",
|
4 |
+
"score": 12.4,
|
5 |
+
"std_err": 0.7,
|
6 |
+
"benchmark_specific": "No",
|
7 |
+
"benchmark_tuned": "No",
|
8 |
+
"followed_evaluation_protocol": "Yes",
|
9 |
+
"reproducible": "Yes",
|
10 |
+
"comments": "NA"
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"benchmark": "WorkArena++-L2",
|
14 |
+
"score": 0.0,
|
15 |
+
"std_err": 0.0,
|
16 |
+
"benchmark_specific": "No",
|
17 |
+
"benchmark_tuned": "No",
|
18 |
+
"followed_evaluation_protocol": "Yes",
|
19 |
+
"reproducible": "Yes",
|
20 |
+
"comments": "NA"
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"benchmark": "WorkArena++-L3",
|
24 |
+
"score": 0.0,
|
25 |
+
"std_err": 0.0,
|
26 |
+
"benchmark_specific": "No",
|
27 |
+
"benchmark_tuned": "No",
|
28 |
+
"followed_evaluation_protocol": "Yes",
|
29 |
+
"reproducible": "Yes",
|
30 |
+
"comments": "NA"
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"benchmark": "MiniWoB",
|
34 |
+
"score": 62.4,
|
35 |
+
"std_err": 0.5,
|
36 |
+
"benchmark_specific": "No",
|
37 |
+
"benchmark_tuned": "No",
|
38 |
+
"followed_evaluation_protocol": "Yes",
|
39 |
+
"reproducible": "Yes",
|
40 |
+
"comments": "NA"
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"benchmark": "WebArena",
|
44 |
+
"score": 12.6,
|
45 |
+
"std_err": 0.9,
|
46 |
+
"benchmark_specific": "No",
|
47 |
+
"benchmark_tuned": "No",
|
48 |
+
"followed_evaluation_protocol": "Yes",
|
49 |
+
"reproducible": "Yes",
|
50 |
+
"comments": "NA"
|
51 |
+
}
|
52 |
+
]
|
results/Bgym-Mixtral-8x22b/webarena.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-Mixtral-8x22b",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WebArena",
|
7 |
+
"score": 12.6,
|
8 |
+
"std_err": 0.9,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-Mixtral-8x22b/workarena++-l2.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-Mixtral-8x22b",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WorkArena++-L2",
|
7 |
+
"score": 0.0,
|
8 |
+
"std_err": 0.0,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-Mixtral-8x22b/workarena++-l3.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-Mixtral-8x22b",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"date_time": "2021-01-01 12:00:00",
|
6 |
+
"benchmark": "WorkArena++-L3",
|
7 |
+
"score": 0.0,
|
8 |
+
"std_err": 0.0,
|
9 |
+
"benchmark_specific": "No",
|
10 |
+
"benchmark_tuned": "No",
|
11 |
+
"followed_evaluation_protocol": "Yes",
|
12 |
+
"reproducible": "Yes",
|
13 |
+
"comments": "NA",
|
14 |
+
"original_or_reproduced": "Original"
|
15 |
+
}
|
16 |
+
]
|
results/Bgym-Mixtral-8x22b/workarena-l1.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"agent_name": "Bgym-Mixtral-8x22b",
|
4 |
+
"study_id": "study_id",
|
5 |
+
"benchmark": "WorkArena-L1",
|
6 |
+
"score": 12.4,
|
7 |
+
"std_err": 0.7,
|
8 |
+
"benchmark_specific": "No",
|
9 |
+
"benchmark_tuned": "No",
|
10 |
+
"followed_evaluation_protocol": "Yes",
|
11 |
+
"reproducible": "Yes",
|
12 |
+
"comments": "NA",
|
13 |
+
"original_or_reproduced": "Original",
|
14 |
+
"date_time": "2021-01-04 12:06:00"
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"agent_name": "Bgym-Mixtral-8x22b",
|
18 |
+
"study_id": "study_id",
|
19 |
+
"benchmark": "WorkArena-L1",
|
20 |
+
"score": 11.4,
|
21 |
+
"std_err": 0.7,
|
22 |
+
"benchmark_specific": "No",
|
23 |
+
"benchmark_tuned": "No",
|
24 |
+
"followed_evaluation_protocol": "Yes",
|
25 |
+
"reproducible": "Yes",
|
26 |
+
"comments": "NA",
|
27 |
+
"original_or_reproduced": "Reproduced",
|
28 |
+
"date_time": "2021-01-04 12:06:00"
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"agent_name": "Bgym-Mixtral-8x22b",
|
32 |
+
"study_id": "study_id",
|
33 |
+
"benchmark": "WorkArena-L1",
|
34 |
+
"score": 13.4,
|
35 |
+
"std_err": 0.7,
|
36 |
+
"benchmark_specific": "No",
|
37 |
+
"benchmark_tuned": "No",
|
38 |
+
"followed_evaluation_protocol": "Yes",
|
39 |
+
"reproducible": "Yes",
|
40 |
+
"comments": "NA",
|
41 |
+
"original_or_reproduced": "Reproduced",
|
42 |
+
"date_time": "2021-01-04 12:06:00"
|
43 |
+
}
|
44 |
+
]
|