Spaces:
Build error
Build error
SanyaAhmed
commited on
Upload 7 files
Browse files- .gitattributes +1 -35
- .gitignore +161 -0
- app.py +83 -0
- function.py +124 -0
- model.pt +3 -0
- packages.txt +1 -0
- requirements.txt +8 -0
.gitattributes
CHANGED
@@ -1,35 +1 @@
|
|
1 |
-
*.
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
*.pt
|
6 |
+
|
7 |
+
# C extensions
|
8 |
+
*.so
|
9 |
+
|
10 |
+
# Distribution / packaging
|
11 |
+
.Python
|
12 |
+
build/
|
13 |
+
develop-eggs/
|
14 |
+
dist/
|
15 |
+
downloads/
|
16 |
+
eggs/
|
17 |
+
.eggs/
|
18 |
+
lib/
|
19 |
+
lib64/
|
20 |
+
parts/
|
21 |
+
sdist/
|
22 |
+
var/
|
23 |
+
wheels/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
cover/
|
54 |
+
|
55 |
+
# Translations
|
56 |
+
*.mo
|
57 |
+
*.pot
|
58 |
+
|
59 |
+
# Django stuff:
|
60 |
+
*.log
|
61 |
+
local_settings.py
|
62 |
+
db.sqlite3
|
63 |
+
db.sqlite3-journal
|
64 |
+
|
65 |
+
# Flask stuff:
|
66 |
+
instance/
|
67 |
+
.webassets-cache
|
68 |
+
|
69 |
+
# Scrapy stuff:
|
70 |
+
.scrapy
|
71 |
+
|
72 |
+
# Sphinx documentation
|
73 |
+
docs/_build/
|
74 |
+
|
75 |
+
# PyBuilder
|
76 |
+
.pybuilder/
|
77 |
+
target/
|
78 |
+
|
79 |
+
# Jupyter Notebook
|
80 |
+
.ipynb_checkpoints
|
81 |
+
|
82 |
+
# IPython
|
83 |
+
profile_default/
|
84 |
+
ipython_config.py
|
85 |
+
|
86 |
+
# pyenv
|
87 |
+
# For a library or package, you might want to ignore these files since the code is
|
88 |
+
# intended to run in multiple environments; otherwise, check them in:
|
89 |
+
# .python-version
|
90 |
+
|
91 |
+
# pipenv
|
92 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
93 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
94 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
95 |
+
# install all needed dependencies.
|
96 |
+
#Pipfile.lock
|
97 |
+
|
98 |
+
# poetry
|
99 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
100 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
101 |
+
# commonly ignored for libraries.
|
102 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
103 |
+
#poetry.lock
|
104 |
+
|
105 |
+
# pdm
|
106 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
107 |
+
#pdm.lock
|
108 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
109 |
+
# in version control.
|
110 |
+
# https://pdm.fming.dev/#use-with-ide
|
111 |
+
.pdm.toml
|
112 |
+
|
113 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
114 |
+
__pypackages__/
|
115 |
+
|
116 |
+
# Celery stuff
|
117 |
+
celerybeat-schedule
|
118 |
+
celerybeat.pid
|
119 |
+
|
120 |
+
# SageMath parsed files
|
121 |
+
*.sage.py
|
122 |
+
|
123 |
+
# Environments
|
124 |
+
.env
|
125 |
+
.venv
|
126 |
+
env/
|
127 |
+
venv/
|
128 |
+
ENV/
|
129 |
+
env.bak/
|
130 |
+
venv.bak/
|
131 |
+
|
132 |
+
# Spyder project settings
|
133 |
+
.spyderproject
|
134 |
+
.spyproject
|
135 |
+
|
136 |
+
# Rope project settings
|
137 |
+
.ropeproject
|
138 |
+
|
139 |
+
# mkdocs documentation
|
140 |
+
/site
|
141 |
+
|
142 |
+
# mypy
|
143 |
+
.mypy_cache/
|
144 |
+
.dmypy.json
|
145 |
+
dmypy.json
|
146 |
+
|
147 |
+
# Pyre type checker
|
148 |
+
.pyre/
|
149 |
+
|
150 |
+
# pytype static type analyzer
|
151 |
+
.pytype/
|
152 |
+
|
153 |
+
# Cython debug symbols
|
154 |
+
cython_debug/
|
155 |
+
|
156 |
+
# PyCharm
|
157 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
158 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
159 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
160 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
161 |
+
.idea
|
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
# from torch import nn
|
5 |
+
# import cv2
|
6 |
+
# import numpy as np
|
7 |
+
# import torch
|
8 |
+
# import torchvision
|
9 |
+
# from torchvision import models, transforms
|
10 |
+
# from torch.utils.data import DataLoader
|
11 |
+
# from torch.utils.data.dataset import Dataset
|
12 |
+
# import os
|
13 |
+
# import matplotlib.pyplot as plt
|
14 |
+
# import face_recognition
|
15 |
+
# import sys
|
16 |
+
# import time
|
17 |
+
# from torch.autograd import Variable
|
18 |
+
from function import Model, validation_dataset, predict
|
19 |
+
|
20 |
+
# Set Streamlit page config
|
21 |
+
st.set_page_config(
|
22 |
+
page_title="DeepFake Detection",
|
23 |
+
layout="centered",
|
24 |
+
page_icon=":mask:"
|
25 |
+
)
|
26 |
+
|
27 |
+
# Load the pre-trained model
|
28 |
+
@st.cache_resource
|
29 |
+
def load_model():
|
30 |
+
model = Model(num_classes=2).cuda()
|
31 |
+
model_path = "model.pt" # Update with actual model path
|
32 |
+
model.load_state_dict(torch.load(model_path))
|
33 |
+
model.eval()
|
34 |
+
return model
|
35 |
+
|
36 |
+
model = load_model()
|
37 |
+
|
38 |
+
st.title("DeepFake Detection App")
|
39 |
+
st.divider()
|
40 |
+
st.sidebar.header("Upload Video")
|
41 |
+
uploaded_video = st.sidebar.file_uploader("Choose a video file", type=["mp4", "avi", "mov"])
|
42 |
+
|
43 |
+
if uploaded_video:
|
44 |
+
st.sidebar.write("Video uploaded successfully!")
|
45 |
+
|
46 |
+
# Save the uploaded video locally for processing
|
47 |
+
with open("uploaded_video.mp4", "wb") as f:
|
48 |
+
f.write(uploaded_video.getbuffer())
|
49 |
+
|
50 |
+
st.video("uploaded_video.mp4")
|
51 |
+
|
52 |
+
# Preprocess and analyze the video
|
53 |
+
with st.spinner("Processing video..."):
|
54 |
+
|
55 |
+
try:
|
56 |
+
# Validation dataset
|
57 |
+
video_dataset = validation_dataset(
|
58 |
+
video_names=["uploaded_video.mp4"],
|
59 |
+
sequence_length=20,
|
60 |
+
transform=transforms.Compose([
|
61 |
+
transforms.ToPILImage(),
|
62 |
+
transforms.Resize((112, 112)),
|
63 |
+
transforms.ToTensor(),
|
64 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
65 |
+
])
|
66 |
+
)
|
67 |
+
|
68 |
+
video_frames = video_dataset[0] # Extract frames from video
|
69 |
+
if video_frames is not None:
|
70 |
+
prediction = predict(model, video_frames)
|
71 |
+
st.subheader("Prediction: ")
|
72 |
+
st.write(f"{'REAL' if prediction[0] == 1 else 'FAKE'}")
|
73 |
+
|
74 |
+
st.subheader("Confidence: ")
|
75 |
+
st.write(f"{prediction[1]:.2f}%")
|
76 |
+
else:
|
77 |
+
st.error("No faces detected in the video.")
|
78 |
+
|
79 |
+
except Exception as e:
|
80 |
+
st.error(f"An error occurred during processing: {e}")
|
81 |
+
|
82 |
+
else:
|
83 |
+
st.sidebar.write("Upload a video file.")
|
function.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
from torchvision import models, transforms
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
from torch.utils.data.dataset import Dataset
|
6 |
+
import os
|
7 |
+
import numpy as np
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import cv2
|
10 |
+
import face_recognition
|
11 |
+
import sys
|
12 |
+
import time
|
13 |
+
from torch.autograd import Variable
|
14 |
+
from torch import nn
|
15 |
+
|
16 |
+
class Model(nn.Module):
|
17 |
+
def __init__(self, num_classes, latent_dim=2048, lstm_layers=1, hidden_dim=2048, bidirectional=False):
|
18 |
+
super(Model, self).__init__()
|
19 |
+
model = models.resnext50_32x4d(pretrained=True)
|
20 |
+
self.model = nn.Sequential(*list(model.children())[:-2])
|
21 |
+
self.lstm = nn.LSTM(latent_dim, hidden_dim, lstm_layers, bidirectional)
|
22 |
+
self.relu = nn.LeakyReLU()
|
23 |
+
self.dp = nn.Dropout(0.4)
|
24 |
+
self.linear1 = nn.Linear(2048, num_classes)
|
25 |
+
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
batch_size, seq_length, c, h, w = x.shape
|
29 |
+
x = x.view(batch_size * seq_length, c, h, w)
|
30 |
+
fmap = self.model(x)
|
31 |
+
x = self.avgpool(fmap)
|
32 |
+
x = x.view(batch_size, seq_length, 2048)
|
33 |
+
x_lstm, _ = self.lstm(x, None)
|
34 |
+
return fmap, self.dp(self.linear1(x_lstm[:, -1, :]))
|
35 |
+
|
36 |
+
im_size = 112
|
37 |
+
mean = [0.485, 0.456, 0.406]
|
38 |
+
std = [0.229, 0.224, 0.225]
|
39 |
+
sm = nn.Softmax()
|
40 |
+
inv_normalize = transforms.Normalize(mean=-1*np.divide(mean, std), std=np.divide([1,1,1], std))
|
41 |
+
|
42 |
+
def im_convert(tensor):
|
43 |
+
image = tensor.to('cpu').clone().detach()
|
44 |
+
image = image.squeeze()
|
45 |
+
image = inv_normalize(image)
|
46 |
+
image = image.numpy()
|
47 |
+
image = image.transpose(1, 2, 0)
|
48 |
+
image = image.clip(0, 1)
|
49 |
+
cv2.imwrite('./2.png', image*255)
|
50 |
+
return image
|
51 |
+
|
52 |
+
def predict(model, img, path = './'):
|
53 |
+
fmap, logits = model(img.to('cuda'))
|
54 |
+
params = list(model.parameters())
|
55 |
+
weight_softmax = model.linear1.weight.detach().cpu().numpy()
|
56 |
+
logits = sm(logits)
|
57 |
+
_, prediction = torch.max(logits,1)
|
58 |
+
confidence = logits[:, int(prediction.item())].item()*100
|
59 |
+
print('confidence of prediction', logits[:, int(prediction.item())].item()*100)
|
60 |
+
idx = np.argmax(logits.detach().cpu().numpy())
|
61 |
+
bz, nc, h, w = fmap.shape
|
62 |
+
out = np.dot(fmap[-1].detach().cpu().numpy().reshape((nc, h*w)).T, weight_softmax[idx, :].T)
|
63 |
+
predict = out.reshape(h, w)
|
64 |
+
predict = predict - np.min(predict)
|
65 |
+
predict_img = predict / np.max(predict)
|
66 |
+
predict_img = np.uint8(255*predict_img)
|
67 |
+
out = cv2.resize(predict_img, (im_size, im_size))
|
68 |
+
heatmap = cv2.applyColorMap(out, cv2.COLORMAP_JET)
|
69 |
+
img = im_convert(img[:, -1, :, :, :])
|
70 |
+
result = heatmap * 0.5 + img*0.8*255
|
71 |
+
cv2.imwrite('./1.png', result)
|
72 |
+
result1 = heatmap * 0.5/255 + img*0.8
|
73 |
+
r, g, b = cv2.split(result1)
|
74 |
+
result1 = cv2.merge((r, g, b))
|
75 |
+
plt.imshow(result1)
|
76 |
+
plt.show()
|
77 |
+
return [int(prediction.item()), confidence]
|
78 |
+
|
79 |
+
class validation_dataset(Dataset):
|
80 |
+
def __init__(self, video_names, sequence_length = 60, transform = None):
|
81 |
+
self.video_names = video_names
|
82 |
+
self.transform = transform
|
83 |
+
self.count = sequence_length
|
84 |
+
def __len__(self):
|
85 |
+
return len(self.video_names)
|
86 |
+
def __getitem__(self, idx):
|
87 |
+
video_path = self.video_names[idx]
|
88 |
+
frames = []
|
89 |
+
a = int(100/self.count)
|
90 |
+
first_frame = np.random.randint(0, a)
|
91 |
+
for i, frame in enumerate(self.frame_extract(video_path)):
|
92 |
+
faces = face_recognition.face_locations(frame)
|
93 |
+
try:
|
94 |
+
top, right, bottom, left = faces[0]
|
95 |
+
frame = frame[top:bottom, left:right, :]
|
96 |
+
except:
|
97 |
+
pass
|
98 |
+
if self.transform:
|
99 |
+
frames.append(self.transform(frame))
|
100 |
+
if(len(frames) == self.count):
|
101 |
+
break
|
102 |
+
if len(frames)==0:
|
103 |
+
print('no face found in the video')
|
104 |
+
return None
|
105 |
+
frames = torch.stack(frames)
|
106 |
+
frames = frames[:self.count]
|
107 |
+
return frames.unsqueeze(0)
|
108 |
+
|
109 |
+
def frame_extract(self, path):
|
110 |
+
vidObj = cv2.VideoCapture(path)
|
111 |
+
success = 1
|
112 |
+
while success:
|
113 |
+
success, image = vidObj.read()
|
114 |
+
if success:
|
115 |
+
yield image
|
116 |
+
|
117 |
+
def im_plot(tensor):
|
118 |
+
image = tensor.cpu().numpy().transpose(1,2,0)
|
119 |
+
b,g,r = cv2.split(image)
|
120 |
+
image = cv2.merge((r,g,b))
|
121 |
+
image = image*[0.22803, 0.22145, 0.216989] + [0.43216, 0.394666, 0.37645]
|
122 |
+
image = image*255.0
|
123 |
+
plt.imshow(image.astype(int))
|
124 |
+
plt.show()
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd1697b63ea963756fc603c33bbc27772d07548ce51e395b01b1bbdf7bcfe3f2
|
3 |
+
size 226547517
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
cmake
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.5.1
|
2 |
+
torchvision==0.20.1
|
3 |
+
opencv-python
|
4 |
+
face_recognition
|
5 |
+
streamlit
|
6 |
+
matplotlib
|
7 |
+
numpy
|
8 |
+
|