Spaces:
Running
on
T4
Running
on
T4
File size: 6,802 Bytes
dc5cd50 a72d334 dc5cd50 a72d334 dc5cd50 a72d334 dc5cd50 a72d334 dc5cd50 a72d334 dc5cd50 a72d334 dc5cd50 a72d334 dc5cd50 a72d334 dc5cd50 a72d334 dc5cd50 a72d334 dc5cd50 a72d334 dc5cd50 a72d334 dc5cd50 a72d334 dc5cd50 a72d334 dc5cd50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import os
import torch
from threading import Thread
from typing import List, Optional, Tuple, Dict
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import spaces
from pathlib import Path
from huggingface_hub import CommitScheduler
import uuid
import json
# Constants
SYSTEM_PROMPT = """You are SmallThinker-3B, a helpful AI assistant. You try to follow instructions as much as possible while being accurate and brief."""
device = "cuda" if torch.cuda.is_available() else "cpu"
TITLE = "<h1><center>SmallThinker-3B Chat</center></h1>"
MODEL_PATH = "PowerInfer/SmallThinker-3B-Preview"
# Custom CSS with dark theme
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
.chat-container {
height: 500px !important;
overflow-y: auto !important;
flex-direction: column !important;
}
.messages-container {
flex-grow: 1 !important;
overflow-y: auto !important;
padding-right: 10px !important;
}
.contain {
height: 100% !important;
}
button {
border-radius: 8px !important;
}
"""
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=torch.bfloat16,
).to(device)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
logs_id = os.getenv("LOGS_ID")
logs_token = os.getenv("HF_LOGS_TOKEN")
logs_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
logs_folder = logs_file.parent
scheduler = CommitScheduler(
repo_id=logs_id,
repo_type="dataset",
folder_path=logs_folder,
path_in_repo="data",
every=5,
token=logs_token,
private=True,
)
@spaces.GPU
def stream_chat(
message: str,
history: list,
temperature: float = 0.3,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
repetition_penalty: float = 1.2,
):
# Create new history list with current message
new_history = history + [[message, ""]]
conversation = []
# Only include previous messages in the conversation
for prompt, answer in history:
conversation.extend([
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=40.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=inputs,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
streamer=streamer,
pad_token_id=tokenizer.pad_token_id,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("\nUser", "")
buffer = buffer.replace("\nSystem", "")
new_history[-1][1] = buffer
yield new_history
with scheduler.lock:
with logs_file.open("a") as f:
f.write(json.dumps({"input": input_text.replace(SYSTEM_PROMPT, ""), "output": buffer.replace(SYSTEM_PROMPT, ""), "model": "SmallThinker-3B"}))
f.write("\n")
def clear_input():
return ""
def add_message(message: str, history: list):
if message.strip() != "":
history = history + [[message, ""]]
return history
def clear_session() -> Tuple[str, List]:
return '', []
def main():
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
with gr.Row():
with gr.Accordion(label="Chat Interface", open=True):
chatbot = gr.Chatbot(
label='SmallThinker-3B',
height=500,
container=True,
elem_classes=["chat-container"]
)
with gr.Accordion(label="⚙️ Parameters", open=False):
temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.3, label="Temperature")
max_new_tokens = gr.Slider(minimum=128, maximum=32768, step=128, value=16384, label="Max new tokens")
top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Top-p")
top_k = gr.Slider(minimum=1, maximum=100, step=1, value=20, label="Top-k")
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.1, label="Repetition penalty")
textbox = gr.Textbox(lines=1, label='Input')
with gr.Row():
clear_history = gr.Button("🧹 Clear History")
submit = gr.Button("🚀 Send")
# Chain of events for submit button
submit_event = submit.click(
fn=add_message,
inputs=[textbox, chatbot],
outputs=chatbot,
queue=False
).then(
fn=clear_input,
outputs=textbox,
queue=False
).then(
fn=stream_chat,
inputs=[textbox, chatbot, temperature, max_new_tokens, top_p, top_k, repetition_penalty],
outputs=chatbot,
show_progress=True
)
# Chain of events for enter key
enter_event = textbox.submit(
fn=add_message,
inputs=[textbox, chatbot],
outputs=chatbot,
queue=False
).then(
fn=clear_input,
outputs=textbox,
queue=False
).then(
fn=stream_chat,
inputs=[textbox, chatbot, temperature, max_new_tokens, top_p, top_k, repetition_penalty],
outputs=chatbot,
show_progress=True
)
clear_history.click(fn=clear_session,
outputs=[textbox, chatbot])
demo.launch()
if __name__ == "__main__":
main() |