Spaces:
Sleeping
Sleeping
File size: 4,406 Bytes
2b799f2 1479d8c 2b799f2 a2cc10f e6f2d3f 74c4534 2b799f2 74c4534 2b799f2 79b7222 fd70c6f 79b7222 3d9ade7 797572d 79b7222 797572d 79b7222 797572d 79b7222 797572d 79b7222 797572d 79b7222 797572d 74c4534 2b799f2 1479d8c 2b799f2 1479d8c bf83e6e 2b799f2 797572d a829665 2b799f2 74c4534 2b799f2 1479d8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
import json
import base64
import time
import gradio as gr
from PIL import Image
from io import BytesIO
import os
host = "http://18.119.36.46:8888"
def image_prompt(prompt, image1, image2, image3, image4):
source1 = open(image1, "rb").read()
source2 = open(image2, "rb").read()
source3 = open(image3, "rb").read()
source4 = open(image4, "rb").read()
params = {
"prompt": prompt,
"image_prompts": [
{
"cn_img": base64.b64encode(source1).decode('utf-8'),
"cn_stop": 1,
"cn_weight": 1,
"cn_type": "ImagePrompt"
},{
"cn_img": base64.b64encode(source2).decode('utf-8'),
"cn_stop": 1,
"cn_weight": 1,
"cn_type": "ImagePrompt"
},{
"cn_img": base64.b64encode(source3).decode('utf-8'),
"cn_stop": 1,
"cn_weight": 1,
"cn_type": "ImagePrompt"
},{
"cn_img": base64.b64encode(source4).decode('utf-8'),
"cn_stop": 1,
"cn_weight": 1,
"cn_type": "ImagePrompt"
}
],
"async_process": True
}
session = requests.Session()
retries = Retry(total=5, backoff_factor=1, status_forcelist=[502, 503, 504])
session.mount('http://', HTTPAdapter(max_retries=retries))
response = session.post(
url=f"{host}/v2/generation/text-to-image-with-ip",
data=json.dumps(params),
headers={"Content-Type": "application/json"},
timeout=10 # Increase timeout as needed
)
result = response.json()
job_id = result.get('job_id')
if job_id:
while True:
query_url = f"{host}/v1/generation/query-job?job_id={job_id}&require_step_preview=true"
response = session.get(query_url, timeout=10) # Increase timeout as needed
job_data = response.json()
job_stage = job_data.get("job_stage")
job_step_preview = job_data.get("job_step_preview")
job_result = job_data.get("job_result")
# Continuously print out or display the attributes every 2 seconds
print(f"Job Stage: {job_stage}")
if job_step_preview:
print("Step Preview Available")
image = Image.open(BytesIO(base64.b64decode(job_step_preview)))
if job_result:
print(f"Job Result: {job_result}")
if job_stage == "SUCCESS":
final_image_url = job_result[0].get("url")
if final_image_url:
final_image_url = final_image_url.replace("127.0.0.1", "18.119.36.46")
image_response = session.get(final_image_url, timeout=10) # Increase timeout as needed
image = Image.open(BytesIO(image_response.content))
return image, "Job completed successfully."
else:
return None, "Final image URL not found in the job data."
elif job_stage == "RUNNING":
if job_step_preview:
image = Image.open(BytesIO(base64.b64decode(job_step_preview)))
time.sleep(2) # Wait 2 seconds before the next update
elif job_stage == "FAILED":
return None, "Job failed."
else:
return None, "Job ID not found."
def gradio_app():
with gr.Blocks() as demo:
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
with gr.Row():
image1 = gr.Image(label="Image Prompt 1", type="filepath")
image2 = gr.Image(label="Image Prompt 2", type="filepath")
image3 = gr.Image(label="Image Prompt 3", type="filepath")
image4 = gr.Image(label="Image Prompt 4", type="filepath")
output_image = gr.Image(label="Generated Image")
status = gr.Textbox(label="Status")
generate_button = gr.Button("Generate Image")
generate_button.click(image_prompt, inputs=[prompt, image1, image2, image3, image4], outputs=[output_image, status])
demo.launch()
if __name__ == "__main__":
gradio_app() |