import transformers import re from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM from vllm import LLM, SamplingParams import torch import gradio as gr import json import os import shutil import requests import chromadb import difflib import pandas as pd from chromadb.config import Settings from chromadb.utils import embedding_functions # Define the device device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "Pclanglais/ocronos2" llm = LLM(model_name, max_model_len=8128) #CSS for references formatting css = """ .generation { margin-left:2em; margin-right:2em; size:1.2em; } :target { background-color: #CCF3DF; } .source { float:left; max-width:17%; margin-left:2%; } .tooltip { position: relative; cursor: pointer; font-variant-position: super; color: #97999b; } .tooltip:hover::after { content: attr(data-text); position: absolute; left: 0; top: 120%; white-space: pre-wrap; width: 500px; max-width: 500px; z-index: 1; background-color: #f9f9f9; color: #000; border: 1px solid #ddd; border-radius: 5px; padding: 5px; display: block; box-shadow: 0 4px 8px rgba(0,0,0,0.1); } /* New styles for diff */ .deleted { background-color: #ffcccb; text-decoration: line-through; } .inserted { background-color: #90EE90; } """ #Curtesy of claude def generate_html_diff(old_text, new_text): d = difflib.Differ() diff = list(d.compare(old_text.split(), new_text.split())) html_diff = [] for word in diff: if word.startswith(' '): html_diff.append(word[2:]) elif word.startswith('+ '): html_diff.append(f'{word[2:]}') # We're not adding anything for words that start with '- ' return ' '.join(html_diff) # Class to encapsulate the Falcon chatbot class MistralChatBot: def __init__(self, system_prompt="Le dialogue suivant est une conversation"): self.system_prompt = system_prompt def predict(self, user_message): sampling_params = SamplingParams(temperature=0.9, top_p=0.95, max_tokens=4000, presence_penalty=0, stop=["#END#"]) detailed_prompt = f"### TEXT ###\n{user_message}\n\n### CORRECTION ###\n" print(detailed_prompt) prompts = [detailed_prompt] outputs = llm.generate(prompts, sampling_params, use_tqdm=False) generated_text = outputs[0].outputs[0].text # Generate HTML diff html_diff = generate_html_diff(user_message, generated_text) generated_text = '