InvSR / sampler_invsr.py
OAOA's picture
add func of get_torch_dtype
2868b95
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2022-07-13 16:59:27
import os, sys, math, random
import cv2
import numpy as np
from pathlib import Path
from loguru import logger
from omegaconf import OmegaConf
from utils import util_net
from utils import util_image
from utils import util_common
from utils import util_color_fix
import torch
import torch.nn.functional as F
import torch.distributed as dist
import torch.multiprocessing as mp
from datapipe.datasets import create_dataset
from diffusers import StableDiffusionInvEnhancePipeline, AutoencoderKL
_positive= 'Cinematic, high-contrast, photo-realistic, 8k, ultra HD, ' +\
'meticulous detailing, hyper sharpness, perfect without deformations'
_negative= 'Low quality, blurring, jpeg artifacts, deformed, over-smooth, cartoon, noisy,' +\
'painting, drawing, sketch, oil painting'
def get_torch_dtype(torch_dtype: str):
if torch_dtype == 'torch.float16':
return torch.float16
elif torch_dtype == 'torch.bfloat16':
return torch.bfloat16
elif torch_dtype == 'torch.float32':
return torch.float32
else:
raise ValueError(f'Unexpected torch dtype:{torch_dtype}')
class BaseSampler:
def __init__(self, configs):
'''
Input:
configs: config, see the yaml file in folder ./configs/
configs.sampler_config.{start_timesteps, padding_mod, seed, sf, num_sample_steps}
seed: int, random seed
'''
self.configs = configs
self.setup_seed()
self.build_model()
def setup_seed(self, seed=None):
seed = self.configs.seed if seed is None else seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def write_log(self, log_str):
print(log_str, flush=True)
def build_model(self):
# Build Stable diffusion
params = dict(self.configs.sd_pipe.params)
torch_dtype = params.pop('torch_dtype')
params['torch_dtype'] = get_torch_dtype(torch_dtype)
base_pipe = util_common.get_obj_from_str(self.configs.sd_pipe.target).from_pretrained(**params)
if self.configs.get('scheduler', None) is not None:
pipe_id = self.configs.scheduler.target.split('.')[-1]
self.write_log(f'Loading scheduler of {pipe_id}...')
base_pipe.scheduler = util_common.get_obj_from_str(self.configs.scheduler.target).from_config(
base_pipe.scheduler.config
)
self.write_log('Loaded Done')
if self.configs.get('vae_fp16', None) is not None:
params_vae = dict(self.configs.vae_fp16.params)
torch_dtype = params_vae.pop('torch_dtype')
params_vae['torch_dtype'] = get_torch_dtype(torch_dtype)
pipe_id = self.configs.vae_fp16.params.pretrained_model_name_or_path
self.write_log(f'Loading improved vae from {pipe_id}...')
base_pipe.vae = util_common.get_obj_from_str(self.configs.vae_fp16.target).from_pretrained(
**params_vae,
)
self.write_log('Loaded Done')
if self.configs.base_model in ['sd-turbo', 'sd2base'] :
sd_pipe = StableDiffusionInvEnhancePipeline.from_pipe(base_pipe)
else:
raise ValueError(f"Unsupported base model: {self.configs.base_model}!")
sd_pipe.to(f"cuda")
if self.configs.sliced_vae:
sd_pipe.vae.enable_slicing()
if self.configs.tiled_vae:
sd_pipe.vae.enable_tiling()
sd_pipe.vae.tile_latent_min_size = self.configs.latent_tiled_size
sd_pipe.vae.tile_sample_min_size = self.configs.sample_tiled_size
if self.configs.gradient_checkpointing_vae:
self.write_log(f"Activating gradient checkpoing for vae...")
sd_pipe.vae._set_gradient_checkpointing(sd_pipe.vae.encoder, True)
sd_pipe.vae._set_gradient_checkpointing(sd_pipe.vae.decoder, True)
model_configs = self.configs.model_start
params = model_configs.get('params', dict)
model_start = util_common.get_obj_from_str(model_configs.target)(**params)
model_start.cuda()
ckpt_path = model_configs.get('ckpt_path')
assert ckpt_path is not None
self.write_log(f"Loading started model from {ckpt_path}...")
state = torch.load(ckpt_path, map_location=f"cuda")
if 'state_dict' in state:
state = state['state_dict']
util_net.reload_model(model_start, state)
self.write_log(f"Loading Done")
model_start.eval()
setattr(sd_pipe, 'start_noise_predictor', model_start)
self.sd_pipe = sd_pipe
class InvSamplerSR(BaseSampler):
@torch.no_grad()
def sample_func(self, im_cond):
'''
Input:
im_cond: b x c x h x w, torch tensor, [0,1], RGB
Output:
xt: h x w x c, numpy array, [0,1], RGB
'''
if self.configs.cfg_scale > 1.0:
negative_prompt = [_negative,]*im_cond.shape[0]
else:
negative_prompt = None
ori_h_lq, ori_w_lq = im_cond.shape[-2:]
ori_w_hq = ori_w_lq * self.configs.basesr.sf
ori_h_hq = ori_h_lq * self.configs.basesr.sf
vae_sf = (2 ** (len(self.sd_pipe.vae.config.block_out_channels) - 1))
if hasattr(self.sd_pipe, 'unet'):
diffusion_sf = (2 ** (len(self.sd_pipe.unet.config.block_out_channels) - 1))
else:
diffusion_sf = self.sd_pipe.transformer.patch_size
mod_lq = vae_sf // self.configs.basesr.sf * diffusion_sf
idle_pch_size = self.configs.basesr.chopping.pch_size
if min(im_cond.shape[-2:]) >= idle_pch_size:
pad_h_up = pad_w_left = 0
else:
while min(im_cond.shape[-2:]) < idle_pch_size:
pad_h_up = max(min((idle_pch_size - im_cond.shape[-2]) // 2, im_cond.shape[-2]-1), 0)
pad_h_down = max(min(idle_pch_size - im_cond.shape[-2] - pad_h_up, im_cond.shape[-2]-1), 0)
pad_w_left = max(min((idle_pch_size - im_cond.shape[-1]) // 2, im_cond.shape[-1]-1), 0)
pad_w_right = max(min(idle_pch_size - im_cond.shape[-1] - pad_w_left, im_cond.shape[-1]-1), 0)
im_cond = F.pad(im_cond, pad=(pad_w_left, pad_w_right, pad_h_up, pad_h_down), mode='reflect')
if im_cond.shape[-2] == idle_pch_size and im_cond.shape[-1] == idle_pch_size:
target_size = (
im_cond.shape[-2] * self.configs.basesr.sf,
im_cond.shape[-1] * self.configs.basesr.sf
)
res_sr = self.sd_pipe(
image=im_cond.type(torch.float16),
prompt=[_positive, ]*im_cond.shape[0],
negative_prompt=negative_prompt,
target_size=target_size,
timesteps=self.configs.timesteps,
guidance_scale=self.configs.cfg_scale,
output_type="pt", # torch tensor, b x c x h x w, [0, 1]
).images
else:
if not (im_cond.shape[-2] % mod_lq == 0 and im_cond.shape[-1] % mod_lq == 0):
target_h_lq = math.ceil(im_cond.shape[-2] / mod_lq) * mod_lq
target_w_lq = math.ceil(im_cond.shape[-1] / mod_lq) * mod_lq
pad_h = target_h_lq - im_cond.shape[-2]
pad_w = target_w_lq - im_cond.shape[-1]
im_cond= F.pad(im_cond, pad=(0, pad_w, 0, pad_h), mode='reflect')
im_spliter = util_image.ImageSpliterTh(
im_cond,
pch_size=idle_pch_size,
stride= int(idle_pch_size * 0.50),
sf=self.configs.basesr.sf,
weight_type=self.configs.basesr.chopping.weight_type,
extra_bs=1 if self.configs.bs > 1 else self.configs.bs,
)
for im_lq_pch, index_infos in im_spliter:
target_size = (
im_lq_pch.shape[-2] * self.configs.basesr.sf,
im_lq_pch.shape[-1] * self.configs.basesr.sf,
)
# start = torch.cuda.Event(enable_timing=True)
# end = torch.cuda.Event(enable_timing=True)
# start.record()
res_sr_pch = self.sd_pipe(
image=im_lq_pch.type(torch.float16),
prompt=[_positive, ]*im_lq_pch.shape[0],
negative_prompt=negative_prompt,
target_size=target_size,
timesteps=self.configs.timesteps,
guidance_scale=self.configs.cfg_scale,
output_type="pt", # torch tensor, b x c x h x w, [0, 1]
).images
# end.record()
# torch.cuda.synchronize()
# print(f"Time: {start.elapsed_time(end):.6f}")
im_spliter.update(res_sr_pch, index_infos)
res_sr = im_spliter.gather()
pad_h_up *= self.configs.basesr.sf
pad_w_left *= self.configs.basesr.sf
res_sr = res_sr[:, :, pad_h_up:ori_h_hq+pad_h_up, pad_w_left:ori_w_hq+pad_w_left]
if self.configs.color_fix:
im_cond_up = F.interpolate(
im_cond, size=res_sr.shape[-2:], mode='bicubic', align_corners=False, antialias=True
)
if self.configs.color_fix == 'ycbcr':
res_sr = util_color_fix.ycbcr_color_replace(res_sr, im_cond_up)
elif self.configs.color_fix == 'wavelet':
res_sr = util_color_fix.wavelet_reconstruction(res_sr, im_cond_up)
else:
raise ValueError(f"Unsupported color fixing type: {self.configs.color_fix}")
res_sr = res_sr.clamp(0.0, 1.0).cpu().permute(0,2,3,1).float().numpy()
return res_sr
def inference(self, in_path, out_path, bs=1):
'''
Inference demo.
Input:
in_path: str, folder or image path for LQ image
out_path: str, folder save the results
bs: int, default bs=1, bs % num_gpus == 0
'''
in_path = Path(in_path) if not isinstance(in_path, Path) else in_path
out_path = Path(out_path) if not isinstance(out_path, Path) else out_path
if not out_path.exists():
out_path.mkdir(parents=True)
if in_path.is_dir():
data_config = {'type': 'base',
'params': {'dir_path': str(in_path),
'transform_type': 'default',
'transform_kwargs': {
'mean': 0.0,
'std': 1.0,
},
'need_path': True,
'recursive': False,
'length': None,
}
}
dataset = create_dataset(data_config)
self.write_log(f'Find {len(dataset)} images in {in_path}')
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=bs, shuffle=False, drop_last=False,
)
for data in dataloader:
res = self.sample_func(data['lq'].cuda())
for jj in range(res.shape[0]):
im_name = Path(data['path'][jj]).stem
save_path = str(out_path / f"{im_name}.png")
util_image.imwrite(res[jj], save_path, dtype_in='float32')
else:
im_cond = util_image.imread(in_path, chn='rgb', dtype='float32') # h x w x c
im_cond = util_image.img2tensor(im_cond).cuda() # 1 x c x h x w
image = self.sample_func(im_cond).squeeze(0)
save_path = str(out_path / f"{in_path.stem}.png")
util_image.imwrite(image, save_path, dtype_in='float32')
self.write_log(f"Processing done, enjoy the results in {str(out_path)}")
if __name__ == '__main__':
pass