import gradio as gr from openai import OpenAI import os # ============================= # GLOBAL SETUP / CLIENT # ============================= # Retrieve the access token from the environment variable ACCESS_TOKEN = os.getenv("HF_TOKEN") print("Access token loaded.") # Initialize the OpenAI client with the Hugging Face Inference API endpoint client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) print("OpenAI client initialized.") # ============================= # MODEL CONFIG / LOGIC # ============================= # Sample placeholder list of "featured" models for demonstration featured_models_list = [ "meta-llama/Llama-2-13B-chat-hf", "bigscience/bloom", "microsoft/DialoGPT-large", "OpenAssistant/oasst-sft-1-pythia-12b", "tiiuae/falcon-7b-instruct", "meta-llama/Llama-3.3-70B-Instruct" ] def filter_featured_models(search_term: str): """ Returns a list of models that contain the search term (case-insensitive). """ filtered = [m for m in featured_models_list if search_term.lower() in m.lower()] return gr.update(choices=filtered) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, frequency_penalty, seed, custom_model, selected_featured_model ): """ This function handles the chatbot response. It takes in: - message: the user's new message - history: the list of previous messages, each as a tuple (user_msg, assistant_msg) - system_message: the system prompt - max_tokens, temperature, top_p, frequency_penalty, seed: generation params - custom_model: user-provided custom model path/name - selected_featured_model: model chosen from the featured radio list """ print(f"Received message: {message}") print(f"History: {history}") print(f"System message: {system_message}") print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") print(f"Custom model: {custom_model}") print(f"Selected featured model: {selected_featured_model}") # Convert seed to None if -1 (meaning random) if seed == -1: seed = None # Construct the messages array required by the API messages = [{"role": "system", "content": system_message}] if system_message.strip() else [] # Add conversation history to the context for val in history: user_part = val[0] assistant_part = val[1] if user_part: messages.append({"role": "user", "content": user_part}) print(f"Added user message to context: {user_part}") if assistant_part: messages.append({"role": "assistant", "content": assistant_part}) print(f"Added assistant message to context: {assistant_part}") # Append the latest user message messages.append({"role": "user", "content": message}) # Determine which model to use: # 1) If custom_model is non-empty, it overrides everything. # 2) Otherwise, use the selected featured model from the radio button if available. # 3) If both are empty, fall back to the default. model_to_use = "meta-llama/Llama-3.3-70B-Instruct" # Default if custom_model.strip() != "": model_to_use = custom_model.strip() elif selected_featured_model.strip() != "": model_to_use = selected_featured_model.strip() print(f"Model selected for inference: {model_to_use}") # Start building the streaming response response = "" print("Sending request to OpenAI API.") # Make the streaming request to the HF Inference API via openai-like client for message_chunk in client.chat.completions.create( model=model_to_use, max_tokens=max_tokens, stream=True, # Stream the response temperature=temperature, top_p=top_p, frequency_penalty=frequency_penalty, seed=seed, messages=messages, ): # Extract the token text from the response chunk token_text = message_chunk.choices[0].delta.content print(f"Received token: {token_text}", flush=True) response += token_text # Yield the partial response to Gradio so it can display in real-time yield response print("Completed response generation.") # ============================= # MAIN UI # ============================= def build_app(): """ Build the Gradio Blocks interface containing: - A Chat tab (ChatInterface) - A Featured Models tab - An Information tab """ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as main_interface: # We define a Gr.State to hold the user's chosen featured model selected_featured_model_state = gr.State("") with gr.Tab("Chat Interface"): gr.Markdown("## Serverless-TextGen-Hub") # Here we embed the ChatInterface for streaming conversation # We add extra inputs for "Selected Featured Model" as hidden, # so the user can't directly edit but it flows into respond(). demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="", label="System message", lines=2), gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty"), gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)"), gr.Textbox(value="", label="Custom Model", info="(Optional) Provide a custom HF model path"), gr.Textbox(value="", label="Selected Featured Model (from tab)", visible=False), ], fill_height=True, chatbot=gr.Chatbot(height=600), theme="Nymbo/Nymbo_Theme", ) # We want to connect the selected_featured_model_state to that hidden text box def set_featured_model_in_chatbox(val): return val # Whenever the selected_featured_model_state changes, update the hidden field in the ChatInterface selected_featured_model_state.change( fn=set_featured_model_in_chatbox, inputs=selected_featured_model_state, outputs=demo.additional_inputs[-1], # The last additional input is the "Selected Featured Model" ) # ========================== # Featured Models Tab # ========================== with gr.Tab("Featured Models"): gr.Markdown("### Choose from our Featured Models") # A text box for searching/filtering model_search = gr.Textbox( label="Filter Models", placeholder="Search for a featured model..." ) # A radio component listing the featured models (default to first) model_radio = gr.Radio( choices=featured_models_list, label="Select a model below", value=featured_models_list[0], interactive=True ) # Define how to update the radio choices when the search box changes model_search.change( fn=filter_featured_models, inputs=model_search, outputs=model_radio ) # Button to confirm the selection def select_featured_model(radio_val): """ Updates the hidden state with the user-chosen featured model. """ return radio_val choose_btn = gr.Button("Use this Featured Model", variant="primary") choose_btn.click( fn=select_featured_model, inputs=model_radio, outputs=selected_featured_model_state ) gr.Markdown( """ **Tip**: If you type a Custom Model in the "Chat Interface" tab, it overrides the featured model you selected here. """ ) # ========================== # Information Tab # ========================== with gr.Tab("Information"): gr.Markdown("## Learn More About These Models and Parameters") with gr.Accordion("Featured Models (Table)", open=False): gr.HTML( """
Below is a small sample table showing some featured models.
Model Name | Type | Notes |
---|---|---|
meta-llama/Llama-2-13B-chat-hf | Chat | Good for multi-turn dialogue. |
bigscience/bloom | Language Model | Large multilingual model. |
microsoft/DialoGPT-large | Chat | Well-known smaller chat model. |