Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,26 +2,22 @@ import gradio as gr
|
|
2 |
from openai import OpenAI
|
3 |
import os
|
4 |
|
5 |
-
|
6 |
-
# and also keep them in the console for debugging.
|
7 |
-
# Note: gr.toast() only works during or after a Gradio event has started.
|
8 |
-
# If this code runs at the global level (on import), the pop-ups may
|
9 |
-
# not appear. They *will* appear for any messages triggered during
|
10 |
-
# a Gradio event (e.g. when the user sends a message).
|
11 |
|
12 |
def show_loading_status(msg):
|
13 |
-
|
|
|
|
|
|
|
14 |
try:
|
15 |
gr.toast(msg)
|
16 |
except:
|
17 |
-
# If gr.toast() fails (e.g. called outside of an event), just ignore or pass
|
18 |
pass
|
19 |
-
# Also print to console for debugging
|
20 |
print(msg)
|
21 |
|
22 |
-
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
23 |
show_loading_status("Access token loaded.")
|
24 |
|
|
|
25 |
client = OpenAI(
|
26 |
base_url="https://api-inference.huggingface.co/v1/",
|
27 |
api_key=ACCESS_TOKEN,
|
@@ -40,7 +36,6 @@ def respond(
|
|
40 |
seed,
|
41 |
custom_model
|
42 |
):
|
43 |
-
|
44 |
show_loading_status(f"Received message: {message}")
|
45 |
show_loading_status(f"History: {history}")
|
46 |
show_loading_status(f"System message: {system_message}")
|
@@ -70,37 +65,53 @@ def respond(
|
|
70 |
messages.append({"role": "user", "content": message})
|
71 |
show_loading_status("Latest user message appended.")
|
72 |
|
73 |
-
# If user provided a model, use that; otherwise, fall back to a default
|
74 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
75 |
show_loading_status(f"Model selected for inference: {model_to_use}")
|
76 |
|
77 |
-
|
78 |
-
response = ""
|
79 |
show_loading_status("Sending request to OpenAI API.")
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
# GRADIO UI
|
99 |
|
100 |
-
chatbot = gr.Chatbot(
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
show_loading_status("Chatbot interface created.")
|
102 |
|
103 |
-
system_message_box = gr.Textbox(
|
|
|
|
|
|
|
|
|
104 |
|
105 |
max_tokens_slider = gr.Slider(
|
106 |
minimum=1,
|
@@ -138,7 +149,6 @@ seed_slider = gr.Slider(
|
|
138 |
label="Seed (-1 for random)"
|
139 |
)
|
140 |
|
141 |
-
# The custom_model_box is what the respond function sees as "custom_model"
|
142 |
custom_model_box = gr.Textbox(
|
143 |
value="",
|
144 |
label="Custom Model",
|
|
|
2 |
from openai import OpenAI
|
3 |
import os
|
4 |
|
5 |
+
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def show_loading_status(msg):
|
8 |
+
"""
|
9 |
+
This helper function attempts to show a pop-up (toast) message if called
|
10 |
+
during an active Gradio event. If that fails, we at least log to console.
|
11 |
+
"""
|
12 |
try:
|
13 |
gr.toast(msg)
|
14 |
except:
|
|
|
15 |
pass
|
|
|
16 |
print(msg)
|
17 |
|
|
|
18 |
show_loading_status("Access token loaded.")
|
19 |
|
20 |
+
# Initialize the Hugging Face Inference-based OpenAI client
|
21 |
client = OpenAI(
|
22 |
base_url="https://api-inference.huggingface.co/v1/",
|
23 |
api_key=ACCESS_TOKEN,
|
|
|
36 |
seed,
|
37 |
custom_model
|
38 |
):
|
|
|
39 |
show_loading_status(f"Received message: {message}")
|
40 |
show_loading_status(f"History: {history}")
|
41 |
show_loading_status(f"System message: {system_message}")
|
|
|
65 |
messages.append({"role": "user", "content": message})
|
66 |
show_loading_status("Latest user message appended.")
|
67 |
|
68 |
+
# If user provided a model, use that; otherwise, fall back to a default
|
69 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
70 |
show_loading_status(f"Model selected for inference: {model_to_use}")
|
71 |
|
72 |
+
response_text = ""
|
|
|
73 |
show_loading_status("Sending request to OpenAI API.")
|
74 |
|
75 |
+
try:
|
76 |
+
for message_chunk in client.chat.completions.create(
|
77 |
+
model=model_to_use,
|
78 |
+
max_tokens=max_tokens,
|
79 |
+
stream=True,
|
80 |
+
temperature=temperature,
|
81 |
+
top_p=top_p,
|
82 |
+
frequency_penalty=frequency_penalty,
|
83 |
+
seed=seed,
|
84 |
+
messages=messages,
|
85 |
+
):
|
86 |
+
# Each chunk is a piece of the streaming text
|
87 |
+
token_text = message_chunk.choices[0].delta.content
|
88 |
+
show_loading_status(f"Received token: {token_text}")
|
89 |
+
response_text += token_text
|
90 |
+
yield response_text
|
91 |
+
|
92 |
+
show_loading_status("Completed response generation.")
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
show_loading_status("Error encountered during completion streaming.")
|
96 |
+
raise gr.Error(f"An unexpected error occurred: {str(e)}")
|
97 |
+
|
98 |
|
99 |
# GRADIO UI
|
100 |
|
101 |
+
chatbot = gr.Chatbot(
|
102 |
+
height=600,
|
103 |
+
show_copy_button=True,
|
104 |
+
placeholder="Select a model and begin chatting",
|
105 |
+
likeable=True,
|
106 |
+
layout="panel"
|
107 |
+
)
|
108 |
show_loading_status("Chatbot interface created.")
|
109 |
|
110 |
+
system_message_box = gr.Textbox(
|
111 |
+
value="",
|
112 |
+
placeholder="You are a helpful assistant.",
|
113 |
+
label="System Prompt"
|
114 |
+
)
|
115 |
|
116 |
max_tokens_slider = gr.Slider(
|
117 |
minimum=1,
|
|
|
149 |
label="Seed (-1 for random)"
|
150 |
)
|
151 |
|
|
|
152 |
custom_model_box = gr.Textbox(
|
153 |
value="",
|
154 |
label="Custom Model",
|