Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -22,8 +22,7 @@ def respond(
|
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
seed,
|
25 |
-
custom_model
|
26 |
-
featured_model
|
27 |
):
|
28 |
"""
|
29 |
This function handles the chatbot response. It takes in:
|
@@ -36,7 +35,6 @@ def respond(
|
|
36 |
- frequency_penalty: penalize repeated tokens in the output
|
37 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
38 |
- custom_model: the user-provided custom model name (if any)
|
39 |
-
- featured_model: the model selected from the "Featured Models" radio
|
40 |
"""
|
41 |
|
42 |
print(f"Received message: {message}")
|
@@ -45,7 +43,6 @@ def respond(
|
|
45 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
46 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
47 |
print(f"Custom model: {custom_model}")
|
48 |
-
print(f"Featured model: {featured_model}")
|
49 |
|
50 |
# Convert seed to None if -1 (meaning random)
|
51 |
if seed == -1:
|
@@ -68,15 +65,8 @@ def respond(
|
|
68 |
# Append the latest user message
|
69 |
messages.append({"role": "user", "content": message})
|
70 |
|
71 |
-
# Determine which model to use
|
72 |
-
|
73 |
-
# Otherwise, use the selected featured_model.
|
74 |
-
# If featured_model is empty, fall back on the default.
|
75 |
-
if custom_model.strip() != "":
|
76 |
-
model_to_use = custom_model.strip()
|
77 |
-
else:
|
78 |
-
model_to_use = featured_model.strip() if featured_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
79 |
-
|
80 |
print(f"Model selected for inference: {model_to_use}")
|
81 |
|
82 |
# Start with an empty string to build the response as tokens stream in
|
@@ -85,9 +75,9 @@ def respond(
|
|
85 |
|
86 |
# Make the streaming request to the HF Inference API via openai-like client
|
87 |
for message_chunk in client.chat.completions.create(
|
88 |
-
model=model_to_use,
|
89 |
max_tokens=max_tokens,
|
90 |
-
stream=True,
|
91 |
temperature=temperature,
|
92 |
top_p=top_p,
|
93 |
frequency_penalty=frequency_penalty,
|
@@ -98,6 +88,7 @@ def respond(
|
|
98 |
token_text = message_chunk.choices[0].delta.content
|
99 |
print(f"Received token: {token_text}")
|
100 |
response += token_text
|
|
|
101 |
yield response
|
102 |
|
103 |
print("Completed response generation.")
|
@@ -106,162 +97,57 @@ def respond(
|
|
106 |
chatbot = gr.Chatbot(height=600)
|
107 |
print("Chatbot interface created.")
|
108 |
|
109 |
-
|
110 |
-
#
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
gr.
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
label="Top-P"
|
161 |
-
),
|
162 |
-
gr.Slider(
|
163 |
-
minimum=-2.0,
|
164 |
-
maximum=2.0,
|
165 |
-
value=0.0,
|
166 |
-
step=0.1,
|
167 |
-
label="Frequency Penalty"
|
168 |
-
),
|
169 |
-
gr.Slider(
|
170 |
-
minimum=-1,
|
171 |
-
maximum=65535,
|
172 |
-
value=-1,
|
173 |
-
step=1,
|
174 |
-
label="Seed (-1 for random)"
|
175 |
-
),
|
176 |
-
gr.Textbox(
|
177 |
-
value="",
|
178 |
-
label="Custom Model",
|
179 |
-
info="(Optional) Provide a custom Hugging Face model path. This overrides the featured model if not empty."
|
180 |
-
),
|
181 |
-
],
|
182 |
-
fill_height=True,
|
183 |
-
chatbot=chatbot
|
184 |
-
)
|
185 |
-
|
186 |
-
# We'll add a new accordion for "Featured Models" within the Chat tab
|
187 |
-
with gr.Accordion("Featured Models", open=True):
|
188 |
-
gr.Markdown("Pick one of the placeholder featured models below, or search for more.")
|
189 |
-
featured_model_search = gr.Textbox(
|
190 |
-
label="Filter Models",
|
191 |
-
placeholder="Type to filter featured models..."
|
192 |
-
)
|
193 |
-
featured_model_radio = gr.Radio(
|
194 |
-
label="Select a featured model",
|
195 |
-
choices=all_featured_models,
|
196 |
-
value="meta-llama/Llama-3.3-70B-Instruct"
|
197 |
-
)
|
198 |
-
# Connect the search box to the filter function
|
199 |
-
featured_model_search.change(
|
200 |
-
filter_featured_models,
|
201 |
-
inputs=featured_model_search,
|
202 |
-
outputs=featured_model_radio
|
203 |
-
)
|
204 |
-
|
205 |
-
# We must connect the featured_model_radio to the chat interface
|
206 |
-
# We'll pass it as the last argument in the respond function.
|
207 |
-
chat_interface.add_variable(featured_model_radio, "featured_model")
|
208 |
-
|
209 |
-
# 3) Create the "Information" tab, containing:
|
210 |
-
# - A "Featured Models" accordion with a table
|
211 |
-
# - A "Parameters Overview" accordion with markdown
|
212 |
-
with gr.Tab("Information"):
|
213 |
-
gr.Markdown("## Additional Information and Help")
|
214 |
-
with gr.Accordion("Featured Models (Table)", open=False):
|
215 |
-
gr.Markdown("""
|
216 |
-
Here is a table of some placeholder featured models:
|
217 |
-
<table style="width:100%; text-align:center; margin:auto;">
|
218 |
-
<tr>
|
219 |
-
<th>Model</th>
|
220 |
-
<th>Description</th>
|
221 |
-
</tr>
|
222 |
-
<tr>
|
223 |
-
<td>meta-llama/Llama-2-7B-Chat-hf</td>
|
224 |
-
<td>A 7B parameter Llama 2 Chat model</td>
|
225 |
-
</tr>
|
226 |
-
<tr>
|
227 |
-
<td>meta-llama/Llama-2-13B-Chat-hf</td>
|
228 |
-
<td>A 13B parameter Llama 2 Chat model</td>
|
229 |
-
</tr>
|
230 |
-
<tr>
|
231 |
-
<td>bigscience/bloom</td>
|
232 |
-
<td>Large-scale multilingual model</td>
|
233 |
-
</tr>
|
234 |
-
<tr>
|
235 |
-
<td>google/flan-t5-xxl</td>
|
236 |
-
<td>A large instruction-tuned T5 model</td>
|
237 |
-
</tr>
|
238 |
-
<tr>
|
239 |
-
<td>meta-llama/Llama-3.3-70B-Instruct</td>
|
240 |
-
<td>70B parameter Llama 3.3 instruct model</td>
|
241 |
-
</tr>
|
242 |
-
</table>
|
243 |
-
""")
|
244 |
-
|
245 |
-
with gr.Accordion("Parameters Overview", open=False):
|
246 |
-
gr.Markdown("""
|
247 |
-
**Here’s a quick breakdown of the main parameters you’ll find in this interface:**
|
248 |
-
|
249 |
-
- **Max New Tokens**: This controls the maximum number of tokens (words or subwords) in the generated response.
|
250 |
-
- **Temperature**: Adjusts how 'creative' or random the model's output is. A low temperature keeps it more predictable; a high temperature makes it more varied or 'wacky.'
|
251 |
-
- **Top-P**: Also known as nucleus sampling. Controls how the model decides which words to include. Lower means more conservative, higher means more open.
|
252 |
-
- **Frequency Penalty**: A value to penalize repeated words or phrases. Higher penalty means the model will avoid repeating itself.
|
253 |
-
- **Seed**: Fix a random seed for reproducibility. If set to -1, a random seed is used each time.
|
254 |
-
- **Custom Model**: Provide the full Hugging Face model path (like `bigscience/bloom`) if you'd like to override the default or the featured model you selected above.
|
255 |
-
|
256 |
-
### Usage Tips
|
257 |
-
1. If you’d like to use one of the featured models, simply select it from the list in the **Featured Models** accordion.
|
258 |
-
2. If you’d like to override the featured models, type your own custom path in **Custom Model**.
|
259 |
-
3. Adjust your parameters (temperature, top-p, etc.) if you want different styles of results.
|
260 |
-
4. You can provide a **System message** to guide the overall behavior or 'role' of the AI. For example, you can say "You are a helpful coding assistant" or something else to set the context.
|
261 |
-
|
262 |
-
Feel free to play around with these settings, and if you have any questions, check out the Hugging Face docs or ask in the community spaces!
|
263 |
-
""")
|
264 |
-
|
265 |
print("Gradio interface initialized.")
|
266 |
|
267 |
if __name__ == "__main__":
|
|
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
seed,
|
25 |
+
custom_model
|
|
|
26 |
):
|
27 |
"""
|
28 |
This function handles the chatbot response. It takes in:
|
|
|
35 |
- frequency_penalty: penalize repeated tokens in the output
|
36 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
37 |
- custom_model: the user-provided custom model name (if any)
|
|
|
38 |
"""
|
39 |
|
40 |
print(f"Received message: {message}")
|
|
|
43 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
44 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
45 |
print(f"Custom model: {custom_model}")
|
|
|
46 |
|
47 |
# Convert seed to None if -1 (meaning random)
|
48 |
if seed == -1:
|
|
|
65 |
# Append the latest user message
|
66 |
messages.append({"role": "user", "content": message})
|
67 |
|
68 |
+
# Determine which model to use: either custom_model or a default
|
69 |
+
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
print(f"Model selected for inference: {model_to_use}")
|
71 |
|
72 |
# Start with an empty string to build the response as tokens stream in
|
|
|
75 |
|
76 |
# Make the streaming request to the HF Inference API via openai-like client
|
77 |
for message_chunk in client.chat.completions.create(
|
78 |
+
model=model_to_use, # Use either the user-provided custom model or default
|
79 |
max_tokens=max_tokens,
|
80 |
+
stream=True, # Stream the response
|
81 |
temperature=temperature,
|
82 |
top_p=top_p,
|
83 |
frequency_penalty=frequency_penalty,
|
|
|
88 |
token_text = message_chunk.choices[0].delta.content
|
89 |
print(f"Received token: {token_text}")
|
90 |
response += token_text
|
91 |
+
# Yield the partial response to Gradio so it can display in real-time
|
92 |
yield response
|
93 |
|
94 |
print("Completed response generation.")
|
|
|
97 |
chatbot = gr.Chatbot(height=600)
|
98 |
print("Chatbot interface created.")
|
99 |
|
100 |
+
# Create the Gradio ChatInterface
|
101 |
+
# We add two new sliders for Frequency Penalty, Seed, and now a new "Custom Model" text box.
|
102 |
+
demo = gr.ChatInterface(
|
103 |
+
fn=respond,
|
104 |
+
additional_inputs=[
|
105 |
+
gr.Textbox(value="", label="System message"),
|
106 |
+
gr.Slider(
|
107 |
+
minimum=1,
|
108 |
+
maximum=4096,
|
109 |
+
value=512,
|
110 |
+
step=1,
|
111 |
+
label="Max new tokens"
|
112 |
+
),
|
113 |
+
gr.Slider(
|
114 |
+
minimum=0.1,
|
115 |
+
maximum=4.0,
|
116 |
+
value=0.7,
|
117 |
+
step=0.1,
|
118 |
+
label="Temperature"
|
119 |
+
),
|
120 |
+
gr.Slider(
|
121 |
+
minimum=0.1,
|
122 |
+
maximum=1.0,
|
123 |
+
value=0.95,
|
124 |
+
step=0.05,
|
125 |
+
label="Top-P"
|
126 |
+
),
|
127 |
+
gr.Slider(
|
128 |
+
minimum=-2.0,
|
129 |
+
maximum=2.0,
|
130 |
+
value=0.0,
|
131 |
+
step=0.1,
|
132 |
+
label="Frequency Penalty"
|
133 |
+
),
|
134 |
+
gr.Slider(
|
135 |
+
minimum=-1,
|
136 |
+
maximum=65535, # Arbitrary upper limit for demonstration
|
137 |
+
value=-1,
|
138 |
+
step=1,
|
139 |
+
label="Seed (-1 for random)"
|
140 |
+
),
|
141 |
+
gr.Textbox(
|
142 |
+
value="",
|
143 |
+
label="Custom Model",
|
144 |
+
info="(Optional) Provide a custom Hugging Face model path. This will override the default model if not empty."
|
145 |
+
),
|
146 |
+
],
|
147 |
+
fill_height=True,
|
148 |
+
chatbot=chatbot,
|
149 |
+
theme="Nymbo/Nymbo_Theme",
|
150 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
print("Gradio interface initialized.")
|
152 |
|
153 |
if __name__ == "__main__":
|