Spaces:
Running
Running
adding examples
Browse files
app.py
CHANGED
@@ -26,8 +26,18 @@ def respond(
|
|
26 |
custom_model
|
27 |
):
|
28 |
"""
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"""
|
|
|
31 |
print(f"Received message: {message}")
|
32 |
print(f"History: {history}")
|
33 |
print(f"System message: {system_message}")
|
@@ -35,25 +45,38 @@ def respond(
|
|
35 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
36 |
print(f"Selected model (custom_model): {custom_model}")
|
37 |
|
|
|
38 |
if seed == -1:
|
39 |
seed = None
|
40 |
|
41 |
-
# Construct the messages array
|
42 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
43 |
for val in history:
|
44 |
-
user_part = val[0]
|
45 |
-
assistant_part = val[1]
|
46 |
if user_part:
|
47 |
messages.append({"role": "user", "content": user_part})
|
|
|
48 |
if assistant_part:
|
49 |
messages.append({"role": "assistant", "content": assistant_part})
|
|
|
50 |
|
|
|
51 |
messages.append({"role": "user", "content": message})
|
|
|
52 |
|
53 |
-
# If user provided a model, use
|
54 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
|
|
|
|
|
|
55 |
response = ""
|
|
|
56 |
|
|
|
57 |
for message_chunk in client.chat.completions.create(
|
58 |
model=model_to_use,
|
59 |
max_tokens=max_tokens,
|
@@ -64,47 +87,81 @@ def respond(
|
|
64 |
seed=seed,
|
65 |
messages=messages,
|
66 |
):
|
|
|
67 |
token_text = message_chunk.choices[0].delta.content
|
|
|
68 |
response += token_text
|
69 |
yield response
|
70 |
|
|
|
|
|
71 |
|
72 |
# -------------------------
|
73 |
# GRADIO UI CONFIGURATION
|
74 |
# -------------------------
|
75 |
|
76 |
-
# Create a Chatbot component
|
77 |
-
chatbot = gr.Chatbot(
|
78 |
-
|
79 |
-
show_copy_button=True,
|
80 |
-
placeholder="Select a model and begin chatting",
|
81 |
-
likeable=True,
|
82 |
-
layout="panel"
|
83 |
-
)
|
84 |
|
85 |
-
# Create textboxes
|
86 |
system_message_box = gr.Textbox(value="", label="System message")
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
def set_custom_model_from_radio(selected):
|
96 |
"""
|
97 |
-
|
|
|
98 |
"""
|
99 |
print(f"Featured model selected: {selected}")
|
100 |
return selected
|
101 |
|
102 |
-
|
103 |
-
#
|
104 |
-
#
|
105 |
-
|
106 |
-
|
107 |
-
# No 'examples' here—because we want to keep the user's parameters unchanged
|
108 |
demo = gr.ChatInterface(
|
109 |
fn=respond,
|
110 |
additional_inputs=[
|
@@ -114,27 +171,42 @@ demo = gr.ChatInterface(
|
|
114 |
top_p_slider,
|
115 |
frequency_penalty_slider,
|
116 |
seed_slider,
|
117 |
-
custom_model_box
|
118 |
],
|
119 |
fill_height=True,
|
120 |
chatbot=chatbot,
|
121 |
-
textbox=user_textbox,
|
122 |
-
multimodal=True,
|
123 |
-
concurrency_limit=20,
|
124 |
theme="Nymbo/Nymbo_Theme",
|
125 |
-
# No examples parameter used
|
126 |
-
cache_examples=False
|
127 |
)
|
128 |
print("ChatInterface object created.")
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
with demo:
|
131 |
-
# Featured models accordion
|
132 |
with gr.Accordion("Featured Models", open=False):
|
133 |
model_search_box = gr.Textbox(
|
134 |
label="Filter Models",
|
135 |
placeholder="Search for a featured model...",
|
136 |
lines=1
|
137 |
)
|
|
|
138 |
|
139 |
models_list = [
|
140 |
"meta-llama/Llama-3.3-70B-Instruct",
|
@@ -155,6 +227,7 @@ with demo:
|
|
155 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
156 |
"microsoft/Phi-3.5-mini-instruct",
|
157 |
]
|
|
|
158 |
|
159 |
featured_model_radio = gr.Radio(
|
160 |
label="Select a model below",
|
@@ -162,9 +235,12 @@ with demo:
|
|
162 |
value="meta-llama/Llama-3.3-70B-Instruct",
|
163 |
interactive=True
|
164 |
)
|
|
|
165 |
|
166 |
def filter_models(search_term):
|
|
|
167 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
|
|
168 |
return gr.update(choices=filtered)
|
169 |
|
170 |
model_search_box.change(
|
@@ -172,34 +248,14 @@ with demo:
|
|
172 |
inputs=model_search_box,
|
173 |
outputs=featured_model_radio
|
174 |
)
|
|
|
175 |
|
176 |
featured_model_radio.change(
|
177 |
fn=set_custom_model_from_radio,
|
178 |
inputs=featured_model_radio,
|
179 |
outputs=custom_model_box
|
180 |
)
|
181 |
-
|
182 |
-
# Example Prompts accordion
|
183 |
-
with gr.Accordion("Example Prompts", open=False):
|
184 |
-
ex1_btn = gr.Button("Example 1: 'Howdy, partner!'")
|
185 |
-
ex2_btn = gr.Button("Example 2: 'What's your model name and who trained you?'")
|
186 |
-
ex3_btn = gr.Button("Example 3: 'How many R's in Strawberry?'")
|
187 |
-
|
188 |
-
# Helper function that returns an update for user_textbox
|
189 |
-
def load_example(example_text):
|
190 |
-
return gr.update(value=example_text)
|
191 |
-
|
192 |
-
ex1_btn.click(fn=lambda: load_example("Howdy, partner!"),
|
193 |
-
inputs=[],
|
194 |
-
outputs=user_textbox)
|
195 |
-
|
196 |
-
ex2_btn.click(fn=lambda: load_example("What's your model name and who trained you?"),
|
197 |
-
inputs=[],
|
198 |
-
outputs=user_textbox)
|
199 |
-
|
200 |
-
ex3_btn.click(fn=lambda: load_example("How many R's are there in the word Strawberry?"),
|
201 |
-
inputs=[],
|
202 |
-
outputs=user_textbox)
|
203 |
|
204 |
print("Gradio interface initialized.")
|
205 |
|
|
|
26 |
custom_model
|
27 |
):
|
28 |
"""
|
29 |
+
This function handles the chatbot response. It takes in:
|
30 |
+
- message: the user's new message
|
31 |
+
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
|
32 |
+
- system_message: the system prompt
|
33 |
+
- max_tokens: the maximum number of tokens to generate in the response
|
34 |
+
- temperature: sampling temperature
|
35 |
+
- top_p: top-p (nucleus) sampling
|
36 |
+
- frequency_penalty: penalize repeated tokens in the output
|
37 |
+
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
38 |
+
- custom_model: the final model name in use, which may be set by selecting from the Featured Models radio or by typing a custom model
|
39 |
"""
|
40 |
+
|
41 |
print(f"Received message: {message}")
|
42 |
print(f"History: {history}")
|
43 |
print(f"System message: {system_message}")
|
|
|
45 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
46 |
print(f"Selected model (custom_model): {custom_model}")
|
47 |
|
48 |
+
# Convert seed to None if -1 (meaning random)
|
49 |
if seed == -1:
|
50 |
seed = None
|
51 |
|
52 |
+
# Construct the messages array required by the API
|
53 |
messages = [{"role": "system", "content": system_message}]
|
54 |
+
print("Initial messages array constructed.")
|
55 |
+
|
56 |
+
# Add conversation history to the context
|
57 |
for val in history:
|
58 |
+
user_part = val[0] # Extract user message from the tuple
|
59 |
+
assistant_part = val[1] # Extract assistant message from the tuple
|
60 |
if user_part:
|
61 |
messages.append({"role": "user", "content": user_part})
|
62 |
+
print(f"Added user message to context: {user_part}")
|
63 |
if assistant_part:
|
64 |
messages.append({"role": "assistant", "content": assistant_part})
|
65 |
+
print(f"Added assistant message to context: {assistant_part}")
|
66 |
|
67 |
+
# Append the latest user message
|
68 |
messages.append({"role": "user", "content": message})
|
69 |
+
print("Latest user message appended.")
|
70 |
|
71 |
+
# If user provided a model, use that; otherwise, fall back to a default model
|
72 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
73 |
+
print(f"Model selected for inference: {model_to_use}")
|
74 |
+
|
75 |
+
# Start with an empty string to build the response as tokens stream in
|
76 |
response = ""
|
77 |
+
print("Sending request to OpenAI API.")
|
78 |
|
79 |
+
# Make the streaming request to the HF Inference API via openai-like client
|
80 |
for message_chunk in client.chat.completions.create(
|
81 |
model=model_to_use,
|
82 |
max_tokens=max_tokens,
|
|
|
87 |
seed=seed,
|
88 |
messages=messages,
|
89 |
):
|
90 |
+
# Extract the token text from the response chunk
|
91 |
token_text = message_chunk.choices[0].delta.content
|
92 |
+
print(f"Received token: {token_text}")
|
93 |
response += token_text
|
94 |
yield response
|
95 |
|
96 |
+
print("Completed response generation.")
|
97 |
+
|
98 |
|
99 |
# -------------------------
|
100 |
# GRADIO UI CONFIGURATION
|
101 |
# -------------------------
|
102 |
|
103 |
+
# Create a Chatbot component with a specified height
|
104 |
+
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", likeable=True, layout="panel")
|
105 |
+
print("Chatbot interface created.")
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
# Create textboxes and sliders for system prompt, tokens, and other parameters
|
108 |
system_message_box = gr.Textbox(value="", label="System message")
|
109 |
+
|
110 |
+
max_tokens_slider = gr.Slider(
|
111 |
+
minimum=1,
|
112 |
+
maximum=4096,
|
113 |
+
value=512,
|
114 |
+
step=1,
|
115 |
+
label="Max new tokens"
|
116 |
+
)
|
117 |
+
temperature_slider = gr.Slider(
|
118 |
+
minimum=0.1,
|
119 |
+
maximum=4.0,
|
120 |
+
value=0.7,
|
121 |
+
step=0.1,
|
122 |
+
label="Temperature"
|
123 |
+
)
|
124 |
+
top_p_slider = gr.Slider(
|
125 |
+
minimum=0.1,
|
126 |
+
maximum=1.0,
|
127 |
+
value=0.95,
|
128 |
+
step=0.05,
|
129 |
+
label="Top-P"
|
130 |
+
)
|
131 |
+
frequency_penalty_slider = gr.Slider(
|
132 |
+
minimum=-2.0,
|
133 |
+
maximum=2.0,
|
134 |
+
value=0.0,
|
135 |
+
step=0.1,
|
136 |
+
label="Frequency Penalty"
|
137 |
+
)
|
138 |
+
seed_slider = gr.Slider(
|
139 |
+
minimum=-1,
|
140 |
+
maximum=65535,
|
141 |
+
value=-1,
|
142 |
+
step=1,
|
143 |
+
label="Seed (-1 for random)"
|
144 |
+
)
|
145 |
+
|
146 |
+
# The custom_model_box is what the respond function sees as "custom_model"
|
147 |
+
custom_model_box = gr.Textbox(
|
148 |
+
value="",
|
149 |
+
label="Custom Model",
|
150 |
+
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model."
|
151 |
+
)
|
152 |
|
153 |
def set_custom_model_from_radio(selected):
|
154 |
"""
|
155 |
+
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
|
156 |
+
We will update the Custom Model text box with that selection automatically.
|
157 |
"""
|
158 |
print(f"Featured model selected: {selected}")
|
159 |
return selected
|
160 |
|
161 |
+
# IMPORTANT: Because we have 1 main user input + 7 additional inputs,
|
162 |
+
# each example should be an 8-item list [user_text, system_prompt, max_tokens, temperature,
|
163 |
+
# top_p, frequency_penalty, seed, custom_model].
|
164 |
+
# You can adjust the default parameter values if desired.
|
|
|
|
|
165 |
demo = gr.ChatInterface(
|
166 |
fn=respond,
|
167 |
additional_inputs=[
|
|
|
171 |
top_p_slider,
|
172 |
frequency_penalty_slider,
|
173 |
seed_slider,
|
174 |
+
custom_model_box,
|
175 |
],
|
176 |
fill_height=True,
|
177 |
chatbot=chatbot,
|
|
|
|
|
|
|
178 |
theme="Nymbo/Nymbo_Theme",
|
|
|
|
|
179 |
)
|
180 |
print("ChatInterface object created.")
|
181 |
|
182 |
+
# Add examples to the interface
|
183 |
+
demo.add_examples(
|
184 |
+
examples=[
|
185 |
+
["Howdy, partner!", "You are a friendly assistant.", 512, 0.7, 0.95, 0.0, -1, ""],
|
186 |
+
["What's your model name and who trained you?", "You are a factual assistant.", 512, 0.7, 0.95, 0.0, -1, ""],
|
187 |
+
["How many R's are there in 'Strawberry'?", "You are a playful assistant.", 512, 0.7, 0.95, 0.0, -1, ""],
|
188 |
+
],
|
189 |
+
inputs=[
|
190 |
+
chatbot,
|
191 |
+
system_message_box,
|
192 |
+
max_tokens_slider,
|
193 |
+
temperature_slider,
|
194 |
+
top_p_slider,
|
195 |
+
frequency_penalty_slider,
|
196 |
+
seed_slider,
|
197 |
+
custom_model_box,
|
198 |
+
],
|
199 |
+
)
|
200 |
+
print("Examples added to the interface.")
|
201 |
+
|
202 |
with demo:
|
|
|
203 |
with gr.Accordion("Featured Models", open=False):
|
204 |
model_search_box = gr.Textbox(
|
205 |
label="Filter Models",
|
206 |
placeholder="Search for a featured model...",
|
207 |
lines=1
|
208 |
)
|
209 |
+
print("Model search box created.")
|
210 |
|
211 |
models_list = [
|
212 |
"meta-llama/Llama-3.3-70B-Instruct",
|
|
|
227 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
228 |
"microsoft/Phi-3.5-mini-instruct",
|
229 |
]
|
230 |
+
print("Models list initialized.")
|
231 |
|
232 |
featured_model_radio = gr.Radio(
|
233 |
label="Select a model below",
|
|
|
235 |
value="meta-llama/Llama-3.3-70B-Instruct",
|
236 |
interactive=True
|
237 |
)
|
238 |
+
print("Featured models radio button created.")
|
239 |
|
240 |
def filter_models(search_term):
|
241 |
+
print(f"Filtering models with search term: {search_term}")
|
242 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
243 |
+
print(f"Filtered models: {filtered}")
|
244 |
return gr.update(choices=filtered)
|
245 |
|
246 |
model_search_box.change(
|
|
|
248 |
inputs=model_search_box,
|
249 |
outputs=featured_model_radio
|
250 |
)
|
251 |
+
print("Model search box change event linked.")
|
252 |
|
253 |
featured_model_radio.change(
|
254 |
fn=set_custom_model_from_radio,
|
255 |
inputs=featured_model_radio,
|
256 |
outputs=custom_model_box
|
257 |
)
|
258 |
+
print("Featured model radio button change event linked.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
print("Gradio interface initialized.")
|
261 |
|