Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -16,9 +16,9 @@ print("OpenAI client initialized.")
|
|
16 |
def respond(
|
17 |
message,
|
18 |
history: list[tuple[str, str]],
|
19 |
-
system_message,
|
20 |
-
custom_model,
|
21 |
model,
|
|
|
|
|
22 |
max_tokens,
|
23 |
temperature,
|
24 |
top_p,
|
@@ -26,66 +26,43 @@ def respond(
|
|
26 |
seed
|
27 |
):
|
28 |
"""
|
29 |
-
This function handles the chatbot response.
|
30 |
-
- message: the user's new message
|
31 |
-
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
|
32 |
-
- system_message: the system prompt
|
33 |
-
- custom_model: custom model path (if any)
|
34 |
-
- model: selected model from featured models
|
35 |
-
- max_tokens: the maximum number of tokens to generate in the response
|
36 |
-
- temperature: sampling temperature
|
37 |
-
- top_p: top-p (nucleus) sampling
|
38 |
-
- frequency_penalty: penalize repeated tokens in the output
|
39 |
-
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
40 |
"""
|
41 |
-
|
42 |
print(f"Received message: {message}")
|
43 |
print(f"History: {history}")
|
44 |
-
print(f"
|
45 |
print(f"Custom model: {custom_model}")
|
46 |
-
print(f"
|
47 |
-
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
48 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
49 |
|
50 |
-
# Convert seed to None if -1
|
51 |
if seed == -1:
|
52 |
seed = None
|
53 |
|
54 |
-
#
|
|
|
|
|
|
|
55 |
messages = [{"role": "system", "content": system_message}]
|
56 |
|
57 |
-
# Add conversation history
|
58 |
for val in history:
|
59 |
user_part = val[0]
|
60 |
assistant_part = val[1]
|
61 |
if user_part:
|
62 |
messages.append({"role": "user", "content": user_part})
|
63 |
-
print(f"Added user message to context: {user_part}")
|
64 |
if assistant_part:
|
65 |
messages.append({"role": "assistant", "content": assistant_part})
|
66 |
-
print(f"Added assistant message to context: {assistant_part}")
|
67 |
|
68 |
-
# Append
|
69 |
messages.append({"role": "user", "content": message})
|
70 |
|
71 |
-
# Start with
|
72 |
response = ""
|
73 |
-
print("Sending request to
|
74 |
|
75 |
-
#
|
76 |
-
if custom_model.strip():
|
77 |
-
selected_model = custom_model.strip()
|
78 |
-
else:
|
79 |
-
# Map the display names to actual model paths
|
80 |
-
model_mapping = {
|
81 |
-
"Llama 2 70B": "meta-llama/Llama-2-70b-chat-hf",
|
82 |
-
"Mixtral 8x7B": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
83 |
-
"Zephyr 7B": "HuggingFaceH4/zephyr-7b-beta",
|
84 |
-
"OpenChat 3.5": "openchat/openchat-3.5-0106",
|
85 |
-
}
|
86 |
-
selected_model = model_mapping.get(model, "meta-llama/Llama-2-70b-chat-hf")
|
87 |
-
|
88 |
-
# Make the streaming request to the HF Inference API via openai-like client
|
89 |
for message_chunk in client.chat.completions.create(
|
90 |
model=selected_model,
|
91 |
max_tokens=max_tokens,
|
@@ -96,7 +73,6 @@ def respond(
|
|
96 |
seed=seed,
|
97 |
messages=messages,
|
98 |
):
|
99 |
-
# Extract the token text from the response chunk
|
100 |
token_text = message_chunk.choices[0].delta.content
|
101 |
print(f"Received token: {token_text}")
|
102 |
response += token_text
|
@@ -104,181 +80,135 @@ def respond(
|
|
104 |
|
105 |
print("Completed response generation.")
|
106 |
|
107 |
-
# Create
|
108 |
chatbot = gr.Chatbot(height=600)
|
109 |
print("Chatbot interface created.")
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
# Create the Gradio interface with tabs
|
112 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
113 |
-
with gr.
|
114 |
-
with gr.
|
115 |
-
|
116 |
-
|
117 |
-
# System Message
|
118 |
-
system_message = gr.Textbox(
|
119 |
-
value="",
|
120 |
-
label="System message",
|
121 |
-
placeholder="Enter a system message to guide the model's behavior"
|
122 |
-
)
|
123 |
-
|
124 |
-
# Model Selection Section
|
125 |
with gr.Accordion("Featured Models", open=True):
|
126 |
-
# Model Search
|
127 |
model_search = gr.Textbox(
|
128 |
label="Filter Models",
|
129 |
-
placeholder="Search for a
|
130 |
lines=1
|
131 |
)
|
132 |
-
|
133 |
-
# Featured Models List
|
134 |
-
models_list = [
|
135 |
-
"Llama 2 70B",
|
136 |
-
"Mixtral 8x7B",
|
137 |
-
"Zephyr 7B",
|
138 |
-
"OpenChat 3.5"
|
139 |
-
]
|
140 |
-
|
141 |
model = gr.Radio(
|
142 |
label="Select a model",
|
143 |
choices=models_list,
|
144 |
-
value="Llama
|
145 |
-
)
|
146 |
-
|
147 |
-
# Custom Model Input
|
148 |
-
custom_model = gr.Textbox(
|
149 |
-
label="Custom Model",
|
150 |
-
info="Hugging Face model path (optional)",
|
151 |
-
placeholder="meta-llama/Llama-2-70b-chat-hf"
|
152 |
-
)
|
153 |
-
|
154 |
-
# Function to filter models
|
155 |
-
def filter_models(search_term):
|
156 |
-
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
|
157 |
-
return gr.update(choices=filtered_models)
|
158 |
-
|
159 |
-
# Update model list when search box is used
|
160 |
-
model_search.change(filter_models, inputs=model_search, outputs=model)
|
161 |
-
|
162 |
-
# Generation Parameters
|
163 |
-
with gr.Row():
|
164 |
-
max_tokens = gr.Slider(
|
165 |
-
minimum=1,
|
166 |
-
maximum=4096,
|
167 |
-
value=512,
|
168 |
-
step=1,
|
169 |
-
label="Max new tokens"
|
170 |
-
)
|
171 |
-
temperature = gr.Slider(
|
172 |
-
minimum=0.1,
|
173 |
-
maximum=4.0,
|
174 |
-
value=0.7,
|
175 |
-
step=0.1,
|
176 |
-
label="Temperature"
|
177 |
-
)
|
178 |
-
|
179 |
-
with gr.Row():
|
180 |
-
top_p = gr.Slider(
|
181 |
-
minimum=0.1,
|
182 |
-
maximum=1.0,
|
183 |
-
value=0.95,
|
184 |
-
step=0.05,
|
185 |
-
label="Top-P"
|
186 |
-
)
|
187 |
-
frequency_penalty = gr.Slider(
|
188 |
-
minimum=-2.0,
|
189 |
-
maximum=2.0,
|
190 |
-
value=0.0,
|
191 |
-
step=0.1,
|
192 |
-
label="Frequency Penalty"
|
193 |
-
)
|
194 |
-
|
195 |
-
with gr.Row():
|
196 |
-
seed = gr.Slider(
|
197 |
-
minimum=-1,
|
198 |
-
maximum=65535,
|
199 |
-
value=-1,
|
200 |
-
step=1,
|
201 |
-
label="Seed (-1 for random)"
|
202 |
-
)
|
203 |
-
|
204 |
-
# Information Tab
|
205 |
-
with gr.Tab("Information"):
|
206 |
-
# Featured Models Table
|
207 |
-
with gr.Accordion("Featured Models", open=True):
|
208 |
-
gr.HTML(
|
209 |
-
"""
|
210 |
-
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-to-text">See all available models</a></p>
|
211 |
-
<table style="width:100%; text-align:center; margin:auto;">
|
212 |
-
<tr>
|
213 |
-
<th>Model Name</th>
|
214 |
-
<th>Size</th>
|
215 |
-
<th>Notes</th>
|
216 |
-
</tr>
|
217 |
-
<tr>
|
218 |
-
<td>Llama 2 70B</td>
|
219 |
-
<td>70B</td>
|
220 |
-
<td>Meta's flagship model</td>
|
221 |
-
</tr>
|
222 |
-
<tr>
|
223 |
-
<td>Mixtral 8x7B</td>
|
224 |
-
<td>47B</td>
|
225 |
-
<td>Mistral AI's MoE model</td>
|
226 |
-
</tr>
|
227 |
-
<tr>
|
228 |
-
<td>Zephyr 7B</td>
|
229 |
-
<td>7B</td>
|
230 |
-
<td>Efficient fine-tuned model</td>
|
231 |
-
</tr>
|
232 |
-
<tr>
|
233 |
-
<td>OpenChat 3.5</td>
|
234 |
-
<td>7B</td>
|
235 |
-
<td>High performance chat model</td>
|
236 |
-
</tr>
|
237 |
-
</table>
|
238 |
-
"""
|
239 |
)
|
240 |
|
241 |
-
#
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
## Max New Tokens
|
249 |
-
Controls the maximum length of the generated response. Higher values allow for longer outputs but may take more time.
|
250 |
-
|
251 |
-
## Temperature
|
252 |
-
Controls randomness in the output:
|
253 |
-
- Lower values (0.1-0.5): More focused and deterministic
|
254 |
-
- Higher values (0.7-1.0): More creative and diverse
|
255 |
-
- Very high values (>1.0): More random and potentially chaotic
|
256 |
-
|
257 |
-
## Top-P (Nucleus Sampling)
|
258 |
-
Controls the cumulative probability threshold for token selection:
|
259 |
-
- Lower values: More focused on highly likely tokens
|
260 |
-
- Higher values: Considers a wider range of possibilities
|
261 |
-
|
262 |
-
## Frequency Penalty
|
263 |
-
Adjusts the likelihood of token repetition:
|
264 |
-
- Negative values: May encourage repetition
|
265 |
-
- Zero: Neutral
|
266 |
-
- Positive values: Discourages repetition
|
267 |
-
|
268 |
-
## Seed
|
269 |
-
A number that controls the randomness in generation:
|
270 |
-
- -1: Random seed each time
|
271 |
-
- Fixed value: Reproducible outputs with same parameters
|
272 |
-
"""
|
273 |
-
)
|
274 |
-
|
275 |
-
# Set up the chat interface
|
276 |
-
chatbot = gr.Chatbot(height=600)
|
277 |
-
msg = gr.Textbox(label="Message")
|
278 |
-
|
279 |
-
clear = gr.ClearButton([msg, chatbot])
|
280 |
-
|
281 |
-
msg.submit(respond, [msg, chatbot, system_message, custom_model, model, max_tokens, temperature, top_p, frequency_penalty, seed], [chatbot, msg])
|
282 |
|
283 |
-
|
284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def respond(
|
17 |
message,
|
18 |
history: list[tuple[str, str]],
|
|
|
|
|
19 |
model,
|
20 |
+
custom_model,
|
21 |
+
system_message,
|
22 |
max_tokens,
|
23 |
temperature,
|
24 |
top_p,
|
|
|
26 |
seed
|
27 |
):
|
28 |
"""
|
29 |
+
This function handles the chatbot response.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"""
|
|
|
31 |
print(f"Received message: {message}")
|
32 |
print(f"History: {history}")
|
33 |
+
print(f"Model: {model}")
|
34 |
print(f"Custom model: {custom_model}")
|
35 |
+
print(f"System message: {system_message}")
|
36 |
+
print(f"Parameters - Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
37 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
38 |
|
39 |
+
# Convert seed to None if -1
|
40 |
if seed == -1:
|
41 |
seed = None
|
42 |
|
43 |
+
# Set the model based on selection or custom input
|
44 |
+
selected_model = custom_model.strip() if custom_model.strip() != "" else model
|
45 |
+
|
46 |
+
# Construct messages array
|
47 |
messages = [{"role": "system", "content": system_message}]
|
48 |
|
49 |
+
# Add conversation history
|
50 |
for val in history:
|
51 |
user_part = val[0]
|
52 |
assistant_part = val[1]
|
53 |
if user_part:
|
54 |
messages.append({"role": "user", "content": user_part})
|
|
|
55 |
if assistant_part:
|
56 |
messages.append({"role": "assistant", "content": assistant_part})
|
|
|
57 |
|
58 |
+
# Append latest message
|
59 |
messages.append({"role": "user", "content": message})
|
60 |
|
61 |
+
# Start with empty response
|
62 |
response = ""
|
63 |
+
print("Sending request to API.")
|
64 |
|
65 |
+
# Make the streaming request
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
for message_chunk in client.chat.completions.create(
|
67 |
model=selected_model,
|
68 |
max_tokens=max_tokens,
|
|
|
73 |
seed=seed,
|
74 |
messages=messages,
|
75 |
):
|
|
|
76 |
token_text = message_chunk.choices[0].delta.content
|
77 |
print(f"Received token: {token_text}")
|
78 |
response += token_text
|
|
|
80 |
|
81 |
print("Completed response generation.")
|
82 |
|
83 |
+
# Create Chatbot component
|
84 |
chatbot = gr.Chatbot(height=600)
|
85 |
print("Chatbot interface created.")
|
86 |
|
87 |
+
# Define available models
|
88 |
+
models_list = [
|
89 |
+
"meta-llama/Llama-2-70b-chat-hf",
|
90 |
+
"meta-llama/Llama-2-13b-chat-hf",
|
91 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
92 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
93 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
94 |
+
]
|
95 |
+
|
96 |
# Create the Gradio interface with tabs
|
97 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
98 |
+
with gr.Tab("Chat"):
|
99 |
+
with gr.Row():
|
100 |
+
with gr.Column():
|
101 |
+
# Model selection accordion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
with gr.Accordion("Featured Models", open=True):
|
|
|
103 |
model_search = gr.Textbox(
|
104 |
label="Filter Models",
|
105 |
+
placeholder="Search for a model...",
|
106 |
lines=1
|
107 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
model = gr.Radio(
|
109 |
label="Select a model",
|
110 |
choices=models_list,
|
111 |
+
value="meta-llama/Llama-2-70b-chat-hf"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
)
|
113 |
|
114 |
+
# Custom model input
|
115 |
+
custom_model = gr.Textbox(
|
116 |
+
label="Custom Model",
|
117 |
+
info="Enter Hugging Face model path (optional)",
|
118 |
+
placeholder="organization/model-name"
|
119 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
# System message and parameters
|
122 |
+
system_message = gr.Textbox(label="System message")
|
123 |
+
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens")
|
124 |
+
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
125 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
|
126 |
+
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
127 |
+
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
|
128 |
+
|
129 |
+
with gr.Tab("Information"):
|
130 |
+
with gr.Accordion("Featured Models", open=False):
|
131 |
+
gr.HTML("""
|
132 |
+
<p><a href="https://huggingface.co/models?pipeline_tag=text-generation&sort=trending">See all available models</a></p>
|
133 |
+
<table style="width:100%; text-align:center; margin:auto;">
|
134 |
+
<tr>
|
135 |
+
<th>Model Name</th>
|
136 |
+
<th>Parameters</th>
|
137 |
+
<th>Notes</th>
|
138 |
+
</tr>
|
139 |
+
<tr>
|
140 |
+
<td>Llama-2-70b-chat</td>
|
141 |
+
<td>70B</td>
|
142 |
+
<td>Meta's largest chat model</td>
|
143 |
+
</tr>
|
144 |
+
<tr>
|
145 |
+
<td>Mixtral-8x7B</td>
|
146 |
+
<td>47B</td>
|
147 |
+
<td>Mixture of Experts architecture</td>
|
148 |
+
</tr>
|
149 |
+
<tr>
|
150 |
+
<td>Mistral-7B</td>
|
151 |
+
<td>7B</td>
|
152 |
+
<td>Efficient base model</td>
|
153 |
+
</tr>
|
154 |
+
</table>
|
155 |
+
""")
|
156 |
+
|
157 |
+
with gr.Accordion("Parameters Overview", open=False):
|
158 |
+
gr.Markdown("""
|
159 |
+
## System Message
|
160 |
+
The system message sets the context and behavior for the AI assistant. It's like giving it a role or specific instructions.
|
161 |
+
|
162 |
+
## Max New Tokens
|
163 |
+
Controls the maximum length of the generated response. Higher values allow for longer responses but take more time.
|
164 |
+
|
165 |
+
## Temperature
|
166 |
+
Controls randomness in the response:
|
167 |
+
- Lower (0.1-0.5): More focused and deterministic
|
168 |
+
- Higher (0.7-1.0): More creative and varied
|
169 |
+
|
170 |
+
## Top-P
|
171 |
+
Nucleus sampling parameter:
|
172 |
+
- Lower values: More focused on likely tokens
|
173 |
+
- Higher values: More diverse vocabulary usage
|
174 |
+
|
175 |
+
## Frequency Penalty
|
176 |
+
Discourages repetition:
|
177 |
+
- Negative: May allow more repetition
|
178 |
+
- Positive: Encourages more diverse word choice
|
179 |
+
|
180 |
+
## Seed
|
181 |
+
Controls randomness initialization:
|
182 |
+
- -1: Random seed each time
|
183 |
+
- Fixed value: Reproducible outputs
|
184 |
+
""")
|
185 |
+
|
186 |
+
# Function to filter models based on search
|
187 |
+
def filter_models(search_term):
|
188 |
+
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
|
189 |
+
return gr.update(choices=filtered_models)
|
190 |
+
|
191 |
+
# Connect the search box to the model filter function
|
192 |
+
model_search.change(filter_models, inputs=model_search, outputs=model)
|
193 |
+
|
194 |
+
# Create the chat interface
|
195 |
+
chat_interface = gr.ChatInterface(
|
196 |
+
respond,
|
197 |
+
additional_inputs=[
|
198 |
+
model,
|
199 |
+
custom_model,
|
200 |
+
system_message,
|
201 |
+
max_tokens,
|
202 |
+
temperature,
|
203 |
+
top_p,
|
204 |
+
frequency_penalty,
|
205 |
+
seed,
|
206 |
+
],
|
207 |
+
chatbot=chatbot,
|
208 |
+
)
|
209 |
+
|
210 |
+
print("Gradio interface initialized.")
|
211 |
+
|
212 |
+
if __name__ == "__main__":
|
213 |
+
print("Launching the demo application.")
|
214 |
+
demo.launch(show_api=False, share=False)
|