Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,10 +2,6 @@ import gradio as gr
|
|
2 |
from openai import OpenAI
|
3 |
import os
|
4 |
|
5 |
-
# =============================
|
6 |
-
# GLOBAL SETUP / CLIENT
|
7 |
-
# =============================
|
8 |
-
|
9 |
# Retrieve the access token from the environment variable
|
10 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
11 |
print("Access token loaded.")
|
@@ -17,25 +13,23 @@ client = OpenAI(
|
|
17 |
)
|
18 |
print("OpenAI client initialized.")
|
19 |
|
20 |
-
#
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
"
|
27 |
-
"
|
28 |
-
"microsoft/DialoGPT-large",
|
29 |
-
"OpenAssistant/oasst-sft-1-pythia-12b",
|
30 |
-
"tiiuae/falcon-7b-instruct",
|
31 |
-
"meta-llama/Llama-3.3-70B-Instruct"
|
32 |
]
|
33 |
|
34 |
-
def filter_featured_models(search_term
|
35 |
"""
|
36 |
-
|
|
|
|
|
37 |
"""
|
38 |
-
filtered = [m for m in
|
39 |
return gr.update(choices=filtered)
|
40 |
|
41 |
|
@@ -49,31 +43,36 @@ def respond(
|
|
49 |
frequency_penalty,
|
50 |
seed,
|
51 |
custom_model,
|
52 |
-
|
53 |
):
|
54 |
"""
|
55 |
This function handles the chatbot response. It takes in:
|
56 |
- message: the user's new message
|
57 |
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
|
58 |
- system_message: the system prompt
|
59 |
-
- max_tokens
|
60 |
-
-
|
61 |
-
-
|
|
|
|
|
|
|
|
|
62 |
"""
|
|
|
63 |
print(f"Received message: {message}")
|
64 |
print(f"History: {history}")
|
65 |
print(f"System message: {system_message}")
|
66 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
67 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
68 |
print(f"Custom model: {custom_model}")
|
69 |
-
print(f"Selected featured model: {
|
70 |
|
71 |
# Convert seed to None if -1 (meaning random)
|
72 |
if seed == -1:
|
73 |
seed = None
|
74 |
|
75 |
# Construct the messages array required by the API
|
76 |
-
messages = [{"role": "system", "content": system_message}]
|
77 |
|
78 |
# Add conversation history to the context
|
79 |
for val in history:
|
@@ -89,19 +88,20 @@ def respond(
|
|
89 |
# Append the latest user message
|
90 |
messages.append({"role": "user", "content": message})
|
91 |
|
92 |
-
#
|
93 |
-
# 1) If
|
94 |
-
# 2)
|
95 |
-
# 3)
|
96 |
-
model_to_use = "meta-llama/Llama-3.3-70B-Instruct" # Default
|
97 |
if custom_model.strip() != "":
|
98 |
model_to_use = custom_model.strip()
|
99 |
-
elif
|
100 |
-
model_to_use =
|
|
|
|
|
101 |
|
102 |
print(f"Model selected for inference: {model_to_use}")
|
103 |
|
104 |
-
# Start
|
105 |
response = ""
|
106 |
print("Sending request to OpenAI API.")
|
107 |
|
@@ -109,7 +109,7 @@ def respond(
|
|
109 |
for message_chunk in client.chat.completions.create(
|
110 |
model=model_to_use,
|
111 |
max_tokens=max_tokens,
|
112 |
-
stream=True,
|
113 |
temperature=temperature,
|
114 |
top_p=top_p,
|
115 |
frequency_penalty=frequency_penalty,
|
@@ -118,168 +118,141 @@ def respond(
|
|
118 |
):
|
119 |
# Extract the token text from the response chunk
|
120 |
token_text = message_chunk.choices[0].delta.content
|
121 |
-
print(f"Received token: {token_text}"
|
122 |
response += token_text
|
123 |
# Yield the partial response to Gradio so it can display in real-time
|
124 |
yield response
|
125 |
|
126 |
print("Completed response generation.")
|
127 |
|
128 |
-
# =============================
|
129 |
-
# MAIN UI
|
130 |
-
# =============================
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
"""
|
260 |
-
)
|
261 |
-
|
262 |
-
with gr.Accordion("Parameters Overview", open=False):
|
263 |
-
gr.Markdown(
|
264 |
-
"""
|
265 |
-
### Explanation of Key Parameters
|
266 |
-
|
267 |
-
- **System Message**: Provides context or initial instructions to the model.
|
268 |
-
- **Max Tokens**: The maximum number of tokens (roughly pieces of words) in the generated response.
|
269 |
-
- **Temperature**: Higher values produce more random/creative outputs, while lower values make the output more focused and deterministic.
|
270 |
-
- **Top-P**: Controls nucleus sampling. The model considers only the tokens whose probability mass exceeds this value.
|
271 |
-
- **Frequency Penalty**: Penalizes repeated tokens. Positive values (like 1.0) reduce repetition in the output. Negative values can increase repetition.
|
272 |
-
- **Seed**: Determines reproducibility. Set it to a fixed integer for consistent results; `-1` is random each time.
|
273 |
-
- **Custom Model**: Overwrites the featured model. Provide the Hugging Face path (e.g., `openai/whisper-base`) for your own usage.
|
274 |
-
|
275 |
-
Use these settings to guide how the model generates text. If in doubt, stick to defaults and experiment in small increments.
|
276 |
-
"""
|
277 |
-
)
|
278 |
-
|
279 |
-
return main_interface
|
280 |
-
|
281 |
-
# If run as a standalone script, just launch.
|
282 |
if __name__ == "__main__":
|
283 |
-
print("
|
284 |
-
|
285 |
-
ui.launch()
|
|
|
2 |
from openai import OpenAI
|
3 |
import os
|
4 |
|
|
|
|
|
|
|
|
|
5 |
# Retrieve the access token from the environment variable
|
6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
7 |
print("Access token loaded.")
|
|
|
13 |
)
|
14 |
print("OpenAI client initialized.")
|
15 |
|
16 |
+
# We'll define a list of placeholder featured models for demonstration.
|
17 |
+
# In real usage, replace them with actual model names available on Hugging Face.
|
18 |
+
models_list = [
|
19 |
+
"PlaceholderModel1",
|
20 |
+
"PlaceholderModel2",
|
21 |
+
"PlaceholderModel3",
|
22 |
+
"PlaceholderModel4",
|
23 |
+
"PlaceholderModel5"
|
|
|
|
|
|
|
|
|
24 |
]
|
25 |
|
26 |
+
def filter_featured_models(search_term):
|
27 |
"""
|
28 |
+
Filters the 'models_list' based on text entered in the search box.
|
29 |
+
Returns a gr.update object that changes the choices available
|
30 |
+
in the 'featured_models_radio'.
|
31 |
"""
|
32 |
+
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
33 |
return gr.update(choices=filtered)
|
34 |
|
35 |
|
|
|
43 |
frequency_penalty,
|
44 |
seed,
|
45 |
custom_model,
|
46 |
+
selected_model
|
47 |
):
|
48 |
"""
|
49 |
This function handles the chatbot response. It takes in:
|
50 |
- message: the user's new message
|
51 |
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
|
52 |
- system_message: the system prompt
|
53 |
+
- max_tokens: the maximum number of tokens to generate in the response
|
54 |
+
- temperature: sampling temperature
|
55 |
+
- top_p: top-p (nucleus) sampling
|
56 |
+
- frequency_penalty: penalize repeated tokens in the output
|
57 |
+
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
58 |
+
- custom_model: a custom Hugging Face model name (if any)
|
59 |
+
- selected_model: a model name chosen from the featured models radio button
|
60 |
"""
|
61 |
+
|
62 |
print(f"Received message: {message}")
|
63 |
print(f"History: {history}")
|
64 |
print(f"System message: {system_message}")
|
65 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
66 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
67 |
print(f"Custom model: {custom_model}")
|
68 |
+
print(f"Selected featured model: {selected_model}")
|
69 |
|
70 |
# Convert seed to None if -1 (meaning random)
|
71 |
if seed == -1:
|
72 |
seed = None
|
73 |
|
74 |
# Construct the messages array required by the API
|
75 |
+
messages = [{"role": "system", "content": system_message}]
|
76 |
|
77 |
# Add conversation history to the context
|
78 |
for val in history:
|
|
|
88 |
# Append the latest user message
|
89 |
messages.append({"role": "user", "content": message})
|
90 |
|
91 |
+
# Decide which model to use:
|
92 |
+
# 1) If the user provided a custom model, use it.
|
93 |
+
# 2) Else if they chose a featured model, use it.
|
94 |
+
# 3) Otherwise, fall back to a default model.
|
|
|
95 |
if custom_model.strip() != "":
|
96 |
model_to_use = custom_model.strip()
|
97 |
+
elif selected_model is not None and selected_model.strip() != "":
|
98 |
+
model_to_use = selected_model.strip()
|
99 |
+
else:
|
100 |
+
model_to_use = "meta-llama/Llama-3.3-70B-Instruct" # Default fallback
|
101 |
|
102 |
print(f"Model selected for inference: {model_to_use}")
|
103 |
|
104 |
+
# Start with an empty string to build the response as tokens stream in
|
105 |
response = ""
|
106 |
print("Sending request to OpenAI API.")
|
107 |
|
|
|
109 |
for message_chunk in client.chat.completions.create(
|
110 |
model=model_to_use,
|
111 |
max_tokens=max_tokens,
|
112 |
+
stream=True,
|
113 |
temperature=temperature,
|
114 |
top_p=top_p,
|
115 |
frequency_penalty=frequency_penalty,
|
|
|
118 |
):
|
119 |
# Extract the token text from the response chunk
|
120 |
token_text = message_chunk.choices[0].delta.content
|
121 |
+
print(f"Received token: {token_text}")
|
122 |
response += token_text
|
123 |
# Yield the partial response to Gradio so it can display in real-time
|
124 |
yield response
|
125 |
|
126 |
print("Completed response generation.")
|
127 |
|
|
|
|
|
|
|
128 |
|
129 |
+
########################
|
130 |
+
# GRADIO APP LAYOUT
|
131 |
+
########################
|
132 |
+
|
133 |
+
# We’ll build a custom Blocks layout so we can have:
|
134 |
+
# - A Featured Models accordion with a search box
|
135 |
+
# - Our ChatInterface to handle the conversation
|
136 |
+
# - Additional sliders and textboxes for settings (like the original code)
|
137 |
+
########################
|
138 |
+
|
139 |
+
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
140 |
+
gr.Markdown("## Serverless Text Generation Hub")
|
141 |
+
gr.Markdown(
|
142 |
+
"An all-in-one UI for chatting with text-generation models on Hugging Face's Inference API."
|
143 |
+
)
|
144 |
+
|
145 |
+
# We keep a Chatbot component for the conversation display
|
146 |
+
chatbot = gr.Chatbot(height=600, label="Chat Preview")
|
147 |
+
|
148 |
+
# Textbox for system message
|
149 |
+
system_message_box = gr.Textbox(
|
150 |
+
value="",
|
151 |
+
label="System Message",
|
152 |
+
placeholder="Enter a system prompt if you want (optional).",
|
153 |
+
)
|
154 |
+
|
155 |
+
# Slider for max_tokens
|
156 |
+
max_tokens_slider = gr.Slider(
|
157 |
+
minimum=1,
|
158 |
+
maximum=4096,
|
159 |
+
value=512,
|
160 |
+
step=1,
|
161 |
+
label="Max new tokens",
|
162 |
+
)
|
163 |
+
|
164 |
+
# Slider for temperature
|
165 |
+
temperature_slider = gr.Slider(
|
166 |
+
minimum=0.1,
|
167 |
+
maximum=4.0,
|
168 |
+
value=0.7,
|
169 |
+
step=0.1,
|
170 |
+
label="Temperature",
|
171 |
+
)
|
172 |
+
|
173 |
+
# Slider for top_p
|
174 |
+
top_p_slider = gr.Slider(
|
175 |
+
minimum=0.1,
|
176 |
+
maximum=1.0,
|
177 |
+
value=0.95,
|
178 |
+
step=0.05,
|
179 |
+
label="Top-P",
|
180 |
+
)
|
181 |
+
|
182 |
+
# Slider for frequency penalty
|
183 |
+
freq_penalty_slider = gr.Slider(
|
184 |
+
minimum=-2.0,
|
185 |
+
maximum=2.0,
|
186 |
+
value=0.0,
|
187 |
+
step=0.1,
|
188 |
+
label="Frequency Penalty",
|
189 |
+
)
|
190 |
+
|
191 |
+
# Slider for seed
|
192 |
+
seed_slider = gr.Slider(
|
193 |
+
minimum=-1,
|
194 |
+
maximum=65535, # Arbitrary upper limit for demonstration
|
195 |
+
value=-1,
|
196 |
+
step=1,
|
197 |
+
label="Seed (-1 for random)",
|
198 |
+
)
|
199 |
+
|
200 |
+
# Custom Model textbox
|
201 |
+
custom_model_box = gr.Textbox(
|
202 |
+
value="",
|
203 |
+
label="Custom Model",
|
204 |
+
info="(Optional) Provide a custom Hugging Face model path. This will override the selected Featured Model if not empty."
|
205 |
+
)
|
206 |
+
|
207 |
+
# Accordion for featured models
|
208 |
+
with gr.Accordion("Featured Models", open=False):
|
209 |
+
# Textbox for filtering the featured models
|
210 |
+
model_search_box = gr.Textbox(
|
211 |
+
label="Filter Models",
|
212 |
+
placeholder="Search for a featured model...",
|
213 |
+
lines=1,
|
214 |
+
)
|
215 |
+
# Radio for selecting the desired model
|
216 |
+
featured_models_radio = gr.Radio(
|
217 |
+
label="Select a featured model below",
|
218 |
+
choices=models_list, # Start with the entire list
|
219 |
+
value=None, # No default
|
220 |
+
interactive=True
|
221 |
+
)
|
222 |
+
|
223 |
+
# We connect the model_search_box to the filter function
|
224 |
+
model_search_box.change(
|
225 |
+
filter_featured_models,
|
226 |
+
inputs=model_search_box,
|
227 |
+
outputs=featured_models_radio
|
228 |
+
)
|
229 |
+
|
230 |
+
# Now we create our ChatInterface
|
231 |
+
# We pass all the extra components as additional_inputs
|
232 |
+
interface = gr.ChatInterface(
|
233 |
+
fn=respond,
|
234 |
+
chatbot=chatbot,
|
235 |
+
additional_inputs=[
|
236 |
+
system_message_box,
|
237 |
+
max_tokens_slider,
|
238 |
+
temperature_slider,
|
239 |
+
top_p_slider,
|
240 |
+
freq_penalty_slider,
|
241 |
+
seed_slider,
|
242 |
+
custom_model_box,
|
243 |
+
featured_models_radio
|
244 |
+
],
|
245 |
+
theme="Nymbo/Nymbo_Theme",
|
246 |
+
title="Serverless TextGen Hub with Featured Models",
|
247 |
+
description=(
|
248 |
+
"Use the sliders and textboxes to control generation parameters. "
|
249 |
+
"Pick a model from 'Featured Models' or specify a custom model path."
|
250 |
+
),
|
251 |
+
# Fill the screen height
|
252 |
+
fill_height=True
|
253 |
+
)
|
254 |
+
|
255 |
+
# If you want the script to be directly executable, launch the demo here:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
if __name__ == "__main__":
|
257 |
+
print("Launching the demo application...")
|
258 |
+
demo.launch()
|
|