Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,23 +3,13 @@ from openai import OpenAI
|
|
3 |
import os
|
4 |
|
5 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
|
|
6 |
|
7 |
-
def show_loading_status(msg):
|
8 |
-
|
9 |
-
try:
|
10 |
-
gr.toast(msg)
|
11 |
-
except:
|
12 |
-
pass
|
13 |
-
print(msg)
|
14 |
-
|
15 |
-
show_loading_status("Access token loaded.")
|
16 |
-
|
17 |
-
# Initialize the Hugging Face Inference-based OpenAI client
|
18 |
client = OpenAI(
|
19 |
base_url="https://api-inference.huggingface.co/v1/",
|
20 |
api_key=ACCESS_TOKEN,
|
21 |
)
|
22 |
-
|
23 |
|
24 |
|
25 |
def respond(
|
@@ -33,18 +23,20 @@ def respond(
|
|
33 |
seed,
|
34 |
custom_model
|
35 |
):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
42 |
|
43 |
# Convert seed to None if -1 (meaning random)
|
44 |
-
|
|
|
45 |
|
46 |
messages = [{"role": "system", "content": system_message}]
|
47 |
-
|
48 |
|
49 |
# Add conversation history to the context
|
50 |
for val in history:
|
@@ -52,62 +44,46 @@ def respond(
|
|
52 |
assistant_part = val[1]
|
53 |
if user_part:
|
54 |
messages.append({"role": "user", "content": user_part})
|
55 |
-
|
56 |
if assistant_part:
|
57 |
messages.append({"role": "assistant", "content": assistant_part})
|
58 |
-
|
59 |
|
60 |
# Append the latest user message
|
61 |
messages.append({"role": "user", "content": message})
|
62 |
-
|
63 |
|
64 |
-
# If user provided a model, use that; otherwise, fall back to a default
|
65 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
show_loading_status("Completed response generation.")
|
89 |
-
|
90 |
-
except Exception as e:
|
91 |
-
show_loading_status("Error encountered during completion streaming.")
|
92 |
-
raise gr.Error(f"An unexpected error occurred: {str(e)}")
|
93 |
-
|
94 |
|
95 |
# GRADIO UI
|
96 |
|
97 |
-
chatbot = gr.Chatbot(
|
98 |
-
|
99 |
-
show_copy_button=True,
|
100 |
-
placeholder="Select a model and begin chatting",
|
101 |
-
likeable=True,
|
102 |
-
layout="panel"
|
103 |
-
)
|
104 |
-
show_loading_status("Chatbot interface created.")
|
105 |
|
106 |
-
system_message_box = gr.Textbox(
|
107 |
-
value="",
|
108 |
-
placeholder="You are a helpful assistant.",
|
109 |
-
label="System Prompt"
|
110 |
-
)
|
111 |
|
112 |
max_tokens_slider = gr.Slider(
|
113 |
minimum=1,
|
@@ -139,21 +115,26 @@ frequency_penalty_slider = gr.Slider(
|
|
139 |
)
|
140 |
seed_slider = gr.Slider(
|
141 |
minimum=-1,
|
142 |
-
maximum=
|
143 |
value=-1,
|
144 |
step=1,
|
145 |
label="Seed (-1 for random)"
|
146 |
)
|
147 |
|
|
|
148 |
custom_model_box = gr.Textbox(
|
149 |
value="",
|
150 |
label="Custom Model",
|
151 |
-
info="(Optional) Provide a custom Hugging Face model path.
|
152 |
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
153 |
)
|
154 |
|
155 |
def set_custom_model_from_radio(selected):
|
156 |
-
|
|
|
|
|
|
|
|
|
157 |
return selected
|
158 |
|
159 |
demo = gr.ChatInterface(
|
@@ -171,7 +152,7 @@ demo = gr.ChatInterface(
|
|
171 |
chatbot=chatbot,
|
172 |
theme="Nymbo/Nymbo_Theme",
|
173 |
)
|
174 |
-
|
175 |
|
176 |
with demo:
|
177 |
with gr.Accordion("Model Selection", open=False):
|
@@ -180,7 +161,7 @@ with demo:
|
|
180 |
placeholder="Search for a featured model...",
|
181 |
lines=1
|
182 |
)
|
183 |
-
|
184 |
|
185 |
models_list = [
|
186 |
"meta-llama/Llama-3.3-70B-Instruct",
|
@@ -188,15 +169,20 @@ with demo:
|
|
188 |
"meta-llama/Llama-3.2-1B-Instruct",
|
189 |
"meta-llama/Llama-3.1-8B-Instruct",
|
190 |
"NousResearch/Hermes-3-Llama-3.1-8B",
|
|
|
|
|
|
|
191 |
"mistralai/Mistral-Nemo-Instruct-2407",
|
192 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
193 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
194 |
"Qwen/Qwen2.5-72B-Instruct",
|
195 |
"Qwen/QwQ-32B-Preview",
|
|
|
196 |
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
|
|
197 |
"microsoft/Phi-3.5-mini-instruct",
|
198 |
]
|
199 |
-
|
200 |
|
201 |
featured_model_radio = gr.Radio(
|
202 |
label="Select a model below",
|
@@ -204,12 +190,12 @@ with demo:
|
|
204 |
value="meta-llama/Llama-3.3-70B-Instruct",
|
205 |
interactive=True
|
206 |
)
|
207 |
-
|
208 |
|
209 |
def filter_models(search_term):
|
210 |
-
|
211 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
212 |
-
|
213 |
return gr.update(choices=filtered)
|
214 |
|
215 |
model_search_box.change(
|
@@ -217,17 +203,17 @@ with demo:
|
|
217 |
inputs=model_search_box,
|
218 |
outputs=featured_model_radio
|
219 |
)
|
220 |
-
|
221 |
|
222 |
featured_model_radio.change(
|
223 |
fn=set_custom_model_from_radio,
|
224 |
inputs=featured_model_radio,
|
225 |
outputs=custom_model_box
|
226 |
)
|
227 |
-
|
228 |
|
229 |
-
|
230 |
|
231 |
if __name__ == "__main__":
|
232 |
-
|
233 |
demo.launch()
|
|
|
3 |
import os
|
4 |
|
5 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
6 |
+
print("Access token loaded.")
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
client = OpenAI(
|
9 |
base_url="https://api-inference.huggingface.co/v1/",
|
10 |
api_key=ACCESS_TOKEN,
|
11 |
)
|
12 |
+
print("OpenAI client initialized.")
|
13 |
|
14 |
|
15 |
def respond(
|
|
|
23 |
seed,
|
24 |
custom_model
|
25 |
):
|
26 |
+
|
27 |
+
print(f"Received message: {message}")
|
28 |
+
print(f"History: {history}")
|
29 |
+
print(f"System message: {system_message}")
|
30 |
+
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
31 |
+
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
32 |
+
print(f"Selected model (custom_model): {custom_model}")
|
33 |
|
34 |
# Convert seed to None if -1 (meaning random)
|
35 |
+
if seed == -1:
|
36 |
+
seed = None
|
37 |
|
38 |
messages = [{"role": "system", "content": system_message}]
|
39 |
+
print("Initial messages array constructed.")
|
40 |
|
41 |
# Add conversation history to the context
|
42 |
for val in history:
|
|
|
44 |
assistant_part = val[1]
|
45 |
if user_part:
|
46 |
messages.append({"role": "user", "content": user_part})
|
47 |
+
print(f"Added user message to context: {user_part}")
|
48 |
if assistant_part:
|
49 |
messages.append({"role": "assistant", "content": assistant_part})
|
50 |
+
print(f"Added assistant message to context: {assistant_part}")
|
51 |
|
52 |
# Append the latest user message
|
53 |
messages.append({"role": "user", "content": message})
|
54 |
+
print("Latest user message appended.")
|
55 |
|
56 |
+
# If user provided a model, use that; otherwise, fall back to a default model
|
57 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
58 |
+
print(f"Model selected for inference: {model_to_use}")
|
59 |
+
|
60 |
+
# Start with an empty string to build the response as tokens stream in
|
61 |
+
response = ""
|
62 |
+
print("Sending request to OpenAI API.")
|
63 |
+
|
64 |
+
for message_chunk in client.chat.completions.create(
|
65 |
+
model=model_to_use,
|
66 |
+
max_tokens=max_tokens,
|
67 |
+
stream=True,
|
68 |
+
temperature=temperature,
|
69 |
+
top_p=top_p,
|
70 |
+
frequency_penalty=frequency_penalty,
|
71 |
+
seed=seed,
|
72 |
+
messages=messages,
|
73 |
+
):
|
74 |
+
token_text = message_chunk.choices[0].delta.content
|
75 |
+
print(f"Received token: {token_text}")
|
76 |
+
response += token_text
|
77 |
+
yield response
|
78 |
+
|
79 |
+
print("Completed response generation.")
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
# GRADIO UI
|
82 |
|
83 |
+
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", likeable=True, layout="panel")
|
84 |
+
print("Chatbot interface created.")
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
|
|
|
|
|
|
|
|
|
87 |
|
88 |
max_tokens_slider = gr.Slider(
|
89 |
minimum=1,
|
|
|
115 |
)
|
116 |
seed_slider = gr.Slider(
|
117 |
minimum=-1,
|
118 |
+
maximum=65535,
|
119 |
value=-1,
|
120 |
step=1,
|
121 |
label="Seed (-1 for random)"
|
122 |
)
|
123 |
|
124 |
+
# The custom_model_box is what the respond function sees as "custom_model"
|
125 |
custom_model_box = gr.Textbox(
|
126 |
value="",
|
127 |
label="Custom Model",
|
128 |
+
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
129 |
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
130 |
)
|
131 |
|
132 |
def set_custom_model_from_radio(selected):
|
133 |
+
"""
|
134 |
+
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
|
135 |
+
We will update the Custom Model text box with that selection automatically.
|
136 |
+
"""
|
137 |
+
print(f"Featured model selected: {selected}")
|
138 |
return selected
|
139 |
|
140 |
demo = gr.ChatInterface(
|
|
|
152 |
chatbot=chatbot,
|
153 |
theme="Nymbo/Nymbo_Theme",
|
154 |
)
|
155 |
+
print("ChatInterface object created.")
|
156 |
|
157 |
with demo:
|
158 |
with gr.Accordion("Model Selection", open=False):
|
|
|
161 |
placeholder="Search for a featured model...",
|
162 |
lines=1
|
163 |
)
|
164 |
+
print("Model search box created.")
|
165 |
|
166 |
models_list = [
|
167 |
"meta-llama/Llama-3.3-70B-Instruct",
|
|
|
169 |
"meta-llama/Llama-3.2-1B-Instruct",
|
170 |
"meta-llama/Llama-3.1-8B-Instruct",
|
171 |
"NousResearch/Hermes-3-Llama-3.1-8B",
|
172 |
+
"google/gemma-2-27b-it",
|
173 |
+
"google/gemma-2-9b-it",
|
174 |
+
"google/gemma-2-2b-it",
|
175 |
"mistralai/Mistral-Nemo-Instruct-2407",
|
176 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
177 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
178 |
"Qwen/Qwen2.5-72B-Instruct",
|
179 |
"Qwen/QwQ-32B-Preview",
|
180 |
+
"PowerInfer/SmallThinker-3B-Preview",
|
181 |
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
182 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
183 |
"microsoft/Phi-3.5-mini-instruct",
|
184 |
]
|
185 |
+
print("Models list initialized.")
|
186 |
|
187 |
featured_model_radio = gr.Radio(
|
188 |
label="Select a model below",
|
|
|
190 |
value="meta-llama/Llama-3.3-70B-Instruct",
|
191 |
interactive=True
|
192 |
)
|
193 |
+
print("Featured models radio button created.")
|
194 |
|
195 |
def filter_models(search_term):
|
196 |
+
print(f"Filtering models with search term: {search_term}")
|
197 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
198 |
+
print(f"Filtered models: {filtered}")
|
199 |
return gr.update(choices=filtered)
|
200 |
|
201 |
model_search_box.change(
|
|
|
203 |
inputs=model_search_box,
|
204 |
outputs=featured_model_radio
|
205 |
)
|
206 |
+
print("Model search box change event linked.")
|
207 |
|
208 |
featured_model_radio.change(
|
209 |
fn=set_custom_model_from_radio,
|
210 |
inputs=featured_model_radio,
|
211 |
outputs=custom_model_box
|
212 |
)
|
213 |
+
print("Featured model radio button change event linked.")
|
214 |
|
215 |
+
print("Gradio interface initialized.")
|
216 |
|
217 |
if __name__ == "__main__":
|
218 |
+
print("Launching the demo application.")
|
219 |
demo.launch()
|