Nymbo's picture
Update app.py
cd58c7b verified
raw
history blame
7.01 kB
import gradio as gr
from openai import OpenAI
import os
ACCESS_TOKEN = os.getenv("HF_TOKEN")
def show_loading_status(msg):
try:
gr.toast(msg)
except:
pass
print(msg)
show_loading_status("Access token loaded.")
# Initialize the Hugging Face Inference-based OpenAI client
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
show_loading_status("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model
):
show_loading_status(f"Received message: {message}")
show_loading_status(f"History: {history}")
show_loading_status(f"System message: {system_message}")
show_loading_status(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
show_loading_status(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
show_loading_status(f"Selected model (custom_model): {custom_model}")
# Convert seed to None if -1 (meaning random)
seed = seed if seed != -1 else random.randint(1, 1000000000),
messages = [{"role": "system", "content": system_message}]
show_loading_status("Initial messages array constructed.")
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
show_loading_status(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
show_loading_status(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
show_loading_status("Latest user message appended.")
# If user provided a model, use that; otherwise, fall back to a default
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
show_loading_status(f"Model selected for inference: {model_to_use}")
response_text = ""
show_loading_status("Sending request to OpenAI API.")
try:
for message_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Each chunk is a piece of the streaming text
token_text = message_chunk.choices[0].delta.content
show_loading_status(f"Received token: {token_text}")
response_text += token_text
yield response_text
show_loading_status("Completed response generation.")
except Exception as e:
show_loading_status("Error encountered during completion streaming.")
raise gr.Error(f"An unexpected error occurred: {str(e)}")
# GRADIO UI
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model and begin chatting",
likeable=True,
layout="panel"
)
show_loading_status("Chatbot interface created.")
system_message_box = gr.Textbox(
value="",
placeholder="You are a helpful assistant.",
label="System Prompt"
)
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
frequency_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
seed_slider = gr.Slider(
minimum=-1,
maximum=1000000000,
value=-1,
step=1,
label="Seed (-1 for random)"
)
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
placeholder="meta-llama/Llama-3.3-70B-Instruct"
)
def set_custom_model_from_radio(selected):
show_loading_status(f"Featured model selected: {selected}")
return selected
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
frequency_penalty_slider,
seed_slider,
custom_model_box,
],
fill_height=True,
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme",
)
show_loading_status("ChatInterface object created.")
with demo:
with gr.Accordion("Model Selection", open=False):
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
show_loading_status("Model search box created.")
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/QwQ-32B-Preview",
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
"microsoft/Phi-3.5-mini-instruct",
]
show_loading_status("Models list initialized.")
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct",
interactive=True
)
show_loading_status("Featured models radio button created.")
def filter_models(search_term):
show_loading_status(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
show_loading_status(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
show_loading_status("Model search box change event linked.")
featured_model_radio.change(
fn=set_custom_model_from_radio,
inputs=featured_model_radio,
outputs=custom_model_box
)
show_loading_status("Featured model radio button change event linked.")
show_loading_status("Gradio interface initialized.")
if __name__ == "__main__":
show_loading_status("Launching the demo application.")
demo.launch()