Spaces:
Runtime error
Runtime error
Nikhil0987
commited on
Commit
•
4b30385
1
Parent(s):
1939ee1
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
if torch.cuda.is_available():
|
10 |
-
torch.cuda.max_memory_allocated(device=device)
|
11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
-
|
18 |
-
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
MAX_IMAGE_SIZE = 1024
|
20 |
-
|
21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
-
|
23 |
-
if randomize_seed:
|
24 |
-
seed = random.randint(0, MAX_SEED)
|
25 |
-
|
26 |
-
generator = torch.Generator().manual_seed(seed)
|
27 |
-
|
28 |
-
image = pipe(
|
29 |
-
prompt = prompt,
|
30 |
-
negative_prompt = negative_prompt,
|
31 |
-
guidance_scale = guidance_scale,
|
32 |
-
num_inference_steps = num_inference_steps,
|
33 |
-
width = width,
|
34 |
-
height = height,
|
35 |
-
generator = generator
|
36 |
-
).images[0]
|
37 |
-
|
38 |
-
return image
|
39 |
-
|
40 |
-
examples = [
|
41 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
42 |
-
"An astronaut riding a green horse",
|
43 |
-
"A delicious ceviche cheesecake slice",
|
44 |
]
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
with gr.Blocks(css=css) as demo:
|
59 |
-
|
60 |
-
with gr.Column(elem_id="col-container"):
|
61 |
-
gr.Markdown(f"""
|
62 |
-
# Text-to-Image Gradio Template
|
63 |
-
Currently running on {power_device}.
|
64 |
-
""")
|
65 |
-
|
66 |
-
with gr.Row():
|
67 |
-
|
68 |
-
prompt = gr.Text(
|
69 |
-
label="Prompt",
|
70 |
-
show_label=False,
|
71 |
-
max_lines=1,
|
72 |
-
placeholder="Enter your prompt",
|
73 |
-
container=False,
|
74 |
-
)
|
75 |
-
|
76 |
-
run_button = gr.Button("Run", scale=0)
|
77 |
-
|
78 |
-
result = gr.Image(label="Result", show_label=False)
|
79 |
-
|
80 |
-
with gr.Accordion("Advanced Settings", open=False):
|
81 |
-
|
82 |
-
negative_prompt = gr.Text(
|
83 |
-
label="Negative prompt",
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
)
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
with gr.Row():
|
118 |
-
|
119 |
-
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
)
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
value=2,
|
133 |
)
|
134 |
-
|
135 |
-
gr.Examples(
|
136 |
-
examples = examples,
|
137 |
-
inputs = [prompt]
|
138 |
-
)
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
)
|
145 |
|
146 |
-
demo.queue().launch()
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import time
|
4 |
+
from contextlib import nullcontext
|
5 |
+
from functools import lru_cache
|
6 |
+
from typing import Any
|
7 |
+
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
+
import rembg
|
|
|
11 |
import torch
|
12 |
+
from gradio_litmodel3d import LitModel3D
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
import sf3d.utils as sf3d_utils
|
16 |
+
from sf3d.system import SF3D
|
17 |
+
|
18 |
+
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.environ.get("TMPDIR", "/tmp"), "gradio")
|
19 |
+
|
20 |
+
rembg_session = rembg.new_session()
|
21 |
+
|
22 |
+
COND_WIDTH = 512
|
23 |
+
COND_HEIGHT = 512
|
24 |
+
COND_DISTANCE = 1.6
|
25 |
+
COND_FOVY_DEG = 40
|
26 |
+
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
|
27 |
+
|
28 |
+
# Cached. Doesn't change
|
29 |
+
c2w_cond = sf3d_utils.default_cond_c2w(COND_DISTANCE)
|
30 |
+
intrinsic, intrinsic_normed_cond = sf3d_utils.create_intrinsic_from_fov_deg(
|
31 |
+
COND_FOVY_DEG, COND_HEIGHT, COND_WIDTH
|
32 |
+
)
|
33 |
+
|
34 |
+
generated_files = []
|
35 |
+
|
36 |
+
# Delete previous gradio temp dir folder
|
37 |
+
if os.path.exists(os.environ["GRADIO_TEMP_DIR"]):
|
38 |
+
print(f"Deleting {os.environ['GRADIO_TEMP_DIR']}")
|
39 |
+
import shutil
|
40 |
+
|
41 |
+
shutil.rmtree(os.environ["GRADIO_TEMP_DIR"])
|
42 |
+
|
43 |
+
device = sf3d_utils.get_device()
|
44 |
+
|
45 |
+
model = SF3D.from_pretrained(
|
46 |
+
"stabilityai/stable-fast-3d",
|
47 |
+
config_name="config.yaml",
|
48 |
+
weight_name="model.safetensors",
|
49 |
+
)
|
50 |
+
model.eval()
|
51 |
+
model = model.to(device)
|
52 |
|
53 |
+
example_files = [
|
54 |
+
os.path.join("demo_files/examples", f) for f in os.listdir("demo_files/examples")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
]
|
56 |
|
57 |
+
|
58 |
+
def run_model(input_image, remesh_option, vertex_count, texture_size):
|
59 |
+
start = time.time()
|
60 |
+
with torch.no_grad():
|
61 |
+
with torch.autocast(
|
62 |
+
device_type=device, dtype=torch.float16
|
63 |
+
) if "cuda" in device else nullcontext():
|
64 |
+
model_batch = create_batch(input_image)
|
65 |
+
model_batch = {k: v.to(device) for k, v in model_batch.items()}
|
66 |
+
trimesh_mesh, _glob_dict = model.generate_mesh(
|
67 |
+
model_batch, texture_size, remesh_option, vertex_count
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
)
|
69 |
+
trimesh_mesh = trimesh_mesh[0]
|
70 |
+
|
71 |
+
# Create new tmp file
|
72 |
+
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".glb")
|
73 |
+
|
74 |
+
trimesh_mesh.export(tmp_file.name, file_type="glb", include_normals=True)
|
75 |
+
generated_files.append(tmp_file.name)
|
76 |
+
|
77 |
+
print("Generation took:", time.time() - start, "s")
|
78 |
+
|
79 |
+
return tmp_file.name
|
80 |
+
|
81 |
+
|
82 |
+
def create_batch(input_image: Image) -> dict[str, Any]:
|
83 |
+
img_cond = (
|
84 |
+
torch.from_numpy(
|
85 |
+
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32)
|
86 |
+
/ 255.0
|
87 |
+
)
|
88 |
+
.float()
|
89 |
+
.clip(0, 1)
|
90 |
+
)
|
91 |
+
mask_cond = img_cond[:, :, -1:]
|
92 |
+
rgb_cond = torch.lerp(
|
93 |
+
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
|
94 |
+
)
|
95 |
+
|
96 |
+
batch_elem = {
|
97 |
+
"rgb_cond": rgb_cond,
|
98 |
+
"mask_cond": mask_cond,
|
99 |
+
"c2w_cond": c2w_cond.unsqueeze(0),
|
100 |
+
"intrinsic_cond": intrinsic.unsqueeze(0),
|
101 |
+
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
|
102 |
+
}
|
103 |
+
# Add batch dim
|
104 |
+
batched = {k: v.unsqueeze(0) for k, v in batch_elem.items()}
|
105 |
+
return batched
|
106 |
+
|
107 |
+
|
108 |
+
@lru_cache
|
109 |
+
def checkerboard(squares: int, size: int, min_value: float = 0.5):
|
110 |
+
base = np.zeros((squares, squares)) + min_value
|
111 |
+
base[1::2, ::2] = 1
|
112 |
+
base[::2, 1::2] = 1
|
113 |
+
|
114 |
+
repeat_mult = size // squares
|
115 |
+
return (
|
116 |
+
base.repeat(repeat_mult, axis=0)
|
117 |
+
.repeat(repeat_mult, axis=1)[:, :, None]
|
118 |
+
.repeat(3, axis=-1)
|
119 |
+
)
|
120 |
+
|
121 |
+
|
122 |
+
def remove_background(input_image: Image) -> Image:
|
123 |
+
return rembg.remove(input_image, session=rembg_session)
|
124 |
+
|
125 |
+
|
126 |
+
def resize_foreground(
|
127 |
+
image: Image,
|
128 |
+
ratio: float,
|
129 |
+
) -> Image:
|
130 |
+
image = np.array(image)
|
131 |
+
assert image.shape[-1] == 4
|
132 |
+
alpha = np.where(image[..., 3] > 0)
|
133 |
+
y1, y2, x1, x2 = (
|
134 |
+
alpha[0].min(),
|
135 |
+
alpha[0].max(),
|
136 |
+
alpha[1].min(),
|
137 |
+
alpha[1].max(),
|
138 |
+
)
|
139 |
+
# crop the foreground
|
140 |
+
fg = image[y1:y2, x1:x2]
|
141 |
+
# pad to square
|
142 |
+
size = max(fg.shape[0], fg.shape[1])
|
143 |
+
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
|
144 |
+
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
|
145 |
+
new_image = np.pad(
|
146 |
+
fg,
|
147 |
+
((ph0, ph1), (pw0, pw1), (0, 0)),
|
148 |
+
mode="constant",
|
149 |
+
constant_values=((0, 0), (0, 0), (0, 0)),
|
150 |
+
)
|
151 |
+
|
152 |
+
# compute padding according to the ratio
|
153 |
+
new_size = int(new_image.shape[0] / ratio)
|
154 |
+
# pad to size, double side
|
155 |
+
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
|
156 |
+
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
|
157 |
+
new_image = np.pad(
|
158 |
+
new_image,
|
159 |
+
((ph0, ph1), (pw0, pw1), (0, 0)),
|
160 |
+
mode="constant",
|
161 |
+
constant_values=((0, 0), (0, 0), (0, 0)),
|
162 |
+
)
|
163 |
+
new_image = Image.fromarray(new_image, mode="RGBA").resize(
|
164 |
+
(COND_WIDTH, COND_HEIGHT)
|
165 |
+
)
|
166 |
+
return new_image
|
167 |
+
|
168 |
+
|
169 |
+
def square_crop(input_image: Image) -> Image:
|
170 |
+
# Perform a center square crop
|
171 |
+
min_size = min(input_image.size)
|
172 |
+
left = (input_image.size[0] - min_size) // 2
|
173 |
+
top = (input_image.size[1] - min_size) // 2
|
174 |
+
right = (input_image.size[0] + min_size) // 2
|
175 |
+
bottom = (input_image.size[1] + min_size) // 2
|
176 |
+
return input_image.crop((left, top, right, bottom)).resize(
|
177 |
+
(COND_WIDTH, COND_HEIGHT)
|
178 |
+
)
|
179 |
+
|
180 |
+
|
181 |
+
def show_mask_img(input_image: Image) -> Image:
|
182 |
+
img_numpy = np.array(input_image)
|
183 |
+
alpha = img_numpy[:, :, 3] / 255.0
|
184 |
+
chkb = checkerboard(32, 512) * 255
|
185 |
+
new_img = img_numpy[..., :3] * alpha[:, :, None] + chkb * (1 - alpha[:, :, None])
|
186 |
+
return Image.fromarray(new_img.astype(np.uint8), mode="RGB")
|
187 |
+
|
188 |
+
|
189 |
+
def run_button(
|
190 |
+
run_btn,
|
191 |
+
input_image,
|
192 |
+
background_state,
|
193 |
+
foreground_ratio,
|
194 |
+
remesh_option,
|
195 |
+
vertex_count,
|
196 |
+
texture_size,
|
197 |
+
):
|
198 |
+
if run_btn == "Run":
|
199 |
+
if torch.cuda.is_available():
|
200 |
+
torch.cuda.reset_peak_memory_stats()
|
201 |
+
glb_file: str = run_model(
|
202 |
+
background_state, remesh_option.lower(), vertex_count, texture_size
|
203 |
+
)
|
204 |
+
if torch.cuda.is_available():
|
205 |
+
print("Peak Memory:", torch.cuda.max_memory_allocated() / 1024 / 1024, "MB")
|
206 |
+
elif torch.backends.mps.is_available():
|
207 |
+
print(
|
208 |
+
"Peak Memory:", torch.mps.driver_allocated_memory() / 1024 / 1024, "MB"
|
209 |
)
|
210 |
+
|
211 |
+
return (
|
212 |
+
gr.update(),
|
213 |
+
gr.update(),
|
214 |
+
gr.update(),
|
215 |
+
gr.update(),
|
216 |
+
gr.update(value=glb_file, visible=True),
|
217 |
+
gr.update(visible=True),
|
218 |
+
)
|
219 |
+
elif run_btn == "Remove Background":
|
220 |
+
rem_removed = remove_background(input_image)
|
221 |
+
|
222 |
+
sqr_crop = square_crop(rem_removed)
|
223 |
+
fr_res = resize_foreground(sqr_crop, foreground_ratio)
|
224 |
+
|
225 |
+
return (
|
226 |
+
gr.update(value="Run", visible=True),
|
227 |
+
sqr_crop,
|
228 |
+
fr_res,
|
229 |
+
gr.update(value=show_mask_img(fr_res), visible=True),
|
230 |
+
gr.update(value=None, visible=False),
|
231 |
+
gr.update(visible=False),
|
232 |
+
)
|
233 |
+
|
234 |
+
|
235 |
+
def requires_bg_remove(image, fr):
|
236 |
+
if image is None:
|
237 |
+
return (
|
238 |
+
gr.update(visible=False, value="Run"),
|
239 |
+
None,
|
240 |
+
None,
|
241 |
+
gr.update(value=None, visible=False),
|
242 |
+
gr.update(visible=False),
|
243 |
+
gr.update(visible=False),
|
244 |
+
)
|
245 |
+
alpha_channel = np.array(image.getchannel("A"))
|
246 |
+
min_alpha = alpha_channel.min()
|
247 |
+
|
248 |
+
if min_alpha == 0:
|
249 |
+
print("Already has alpha")
|
250 |
+
sqr_crop = square_crop(image)
|
251 |
+
fr_res = resize_foreground(sqr_crop, fr)
|
252 |
+
return (
|
253 |
+
gr.update(value="Run", visible=True),
|
254 |
+
sqr_crop,
|
255 |
+
fr_res,
|
256 |
+
gr.update(value=show_mask_img(fr_res), visible=True),
|
257 |
+
gr.update(visible=False),
|
258 |
+
gr.update(visible=False),
|
259 |
+
)
|
260 |
+
return (
|
261 |
+
gr.update(value="Remove Background", visible=True),
|
262 |
+
None,
|
263 |
+
None,
|
264 |
+
gr.update(value=None, visible=False),
|
265 |
+
gr.update(visible=False),
|
266 |
+
gr.update(visible=False),
|
267 |
+
)
|
268 |
+
|
269 |
+
|
270 |
+
def update_foreground_ratio(img_proc, fr):
|
271 |
+
foreground_res = resize_foreground(img_proc, fr)
|
272 |
+
return (
|
273 |
+
foreground_res,
|
274 |
+
gr.update(value=show_mask_img(foreground_res)),
|
275 |
+
)
|
276 |
+
|
277 |
+
|
278 |
+
with gr.Blocks() as demo:
|
279 |
+
img_proc_state = gr.State()
|
280 |
+
background_remove_state = gr.State()
|
281 |
+
gr.Markdown("""
|
282 |
+
# SF3D: Stable Fast 3D Mesh Reconstruction with UV-unwrapping and Illumination Disentanglement
|
283 |
+
|
284 |
+
**SF3D** is a state-of-the-art method for 3D mesh reconstruction from a single image.
|
285 |
+
This demo allows you to upload an image and generate a 3D mesh model from it.
|
286 |
+
|
287 |
+
**Tips**
|
288 |
+
1. If the image already has an alpha channel, you can skip the background removal step.
|
289 |
+
2. You can adjust the foreground ratio to control the size of the foreground object. This can influence the shape
|
290 |
+
3. You can select the remeshing option to control the mesh topology. This can introduce artifacts in the mesh on thin surfaces and should be turned off in such cases.
|
291 |
+
4. You can upload your own HDR environment map to light the 3D model.
|
292 |
+
""")
|
293 |
+
with gr.Row(variant="panel"):
|
294 |
+
with gr.Column():
|
295 |
with gr.Row():
|
296 |
+
input_img = gr.Image(
|
297 |
+
type="pil", label="Input Image", sources="upload", image_mode="RGBA"
|
|
|
|
|
|
|
|
|
|
|
298 |
)
|
299 |
+
preview_removal = gr.Image(
|
300 |
+
label="Preview Background Removal",
|
301 |
+
type="pil",
|
302 |
+
image_mode="RGB",
|
303 |
+
interactive=False,
|
304 |
+
visible=False,
|
|
|
305 |
)
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
+
foreground_ratio = gr.Slider(
|
308 |
+
label="Foreground Ratio",
|
309 |
+
minimum=0.5,
|
310 |
+
maximum=1.0,
|
311 |
+
value=0.85,
|
312 |
+
step=0.05,
|
313 |
+
)
|
314 |
+
|
315 |
+
foreground_ratio.change(
|
316 |
+
update_foreground_ratio,
|
317 |
+
inputs=[img_proc_state, foreground_ratio],
|
318 |
+
outputs=[background_remove_state, preview_removal],
|
319 |
+
)
|
320 |
+
|
321 |
+
remesh_option = gr.Radio(
|
322 |
+
choices=["None", "Triangle", "Quad"],
|
323 |
+
label="Remeshing",
|
324 |
+
value="None",
|
325 |
+
visible=True,
|
326 |
+
)
|
327 |
+
|
328 |
+
vertex_count_slider = gr.Slider(
|
329 |
+
label="Target Vertex Count",
|
330 |
+
minimum=1000,
|
331 |
+
maximum=20000,
|
332 |
+
value=10000,
|
333 |
+
step=1000,
|
334 |
+
visible=True,
|
335 |
+
)
|
336 |
+
|
337 |
+
texture_size = gr.Slider(
|
338 |
+
label="Texture Size",
|
339 |
+
minimum=512,
|
340 |
+
maximum=2048,
|
341 |
+
value=1024,
|
342 |
+
step=256,
|
343 |
+
visible=True,
|
344 |
+
)
|
345 |
+
|
346 |
+
run_btn = gr.Button("Run", variant="primary", visible=False)
|
347 |
+
|
348 |
+
with gr.Column():
|
349 |
+
output_3d = LitModel3D(
|
350 |
+
label="3D Model",
|
351 |
+
visible=False,
|
352 |
+
clear_color=[0.0, 0.0, 0.0, 0.0],
|
353 |
+
tonemapping="aces",
|
354 |
+
contrast=1.0,
|
355 |
+
scale=1.0,
|
356 |
+
)
|
357 |
+
with gr.Column(visible=False, scale=1.0) as hdr_row:
|
358 |
+
gr.Markdown("""## HDR Environment Map
|
359 |
+
|
360 |
+
Select an HDR environment map to light the 3D model. You can also upload your own HDR environment maps.
|
361 |
+
""")
|
362 |
+
|
363 |
+
with gr.Row():
|
364 |
+
hdr_illumination_file = gr.File(
|
365 |
+
label="HDR Env Map", file_types=[".hdr"], file_count="single"
|
366 |
+
)
|
367 |
+
example_hdris = [
|
368 |
+
os.path.join("demo_files/hdri", f)
|
369 |
+
for f in os.listdir("demo_files/hdri")
|
370 |
+
]
|
371 |
+
hdr_illumination_example = gr.Examples(
|
372 |
+
examples=example_hdris,
|
373 |
+
inputs=hdr_illumination_file,
|
374 |
+
)
|
375 |
+
|
376 |
+
hdr_illumination_file.change(
|
377 |
+
lambda x: gr.update(env_map=x.name if x is not None else None),
|
378 |
+
inputs=hdr_illumination_file,
|
379 |
+
outputs=[output_3d],
|
380 |
+
)
|
381 |
+
|
382 |
+
examples = gr.Examples(
|
383 |
+
examples=example_files,
|
384 |
+
inputs=input_img,
|
385 |
+
)
|
386 |
+
|
387 |
+
input_img.change(
|
388 |
+
requires_bg_remove,
|
389 |
+
inputs=[input_img, foreground_ratio],
|
390 |
+
outputs=[
|
391 |
+
run_btn,
|
392 |
+
img_proc_state,
|
393 |
+
background_remove_state,
|
394 |
+
preview_removal,
|
395 |
+
output_3d,
|
396 |
+
hdr_row,
|
397 |
+
],
|
398 |
+
)
|
399 |
+
|
400 |
+
run_btn.click(
|
401 |
+
run_button,
|
402 |
+
inputs=[
|
403 |
+
run_btn,
|
404 |
+
input_img,
|
405 |
+
background_remove_state,
|
406 |
+
foreground_ratio,
|
407 |
+
remesh_option,
|
408 |
+
vertex_count_slider,
|
409 |
+
texture_size,
|
410 |
+
],
|
411 |
+
outputs=[
|
412 |
+
run_btn,
|
413 |
+
img_proc_state,
|
414 |
+
background_remove_state,
|
415 |
+
preview_removal,
|
416 |
+
output_3d,
|
417 |
+
hdr_row,
|
418 |
+
],
|
419 |
)
|
420 |
|
421 |
+
demo.queue().launch(share=False)
|